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1 Scope

This technical note provides considerations for handling of Regions of Interest in a stacked analysis.

2 Formulating the problem

Each analysis of an observation requires the definition of a Region of Interest (RoI) which delimits the data
space that is used for the analysis. The RoI can be a spatial selection (for example a circle on the sky) or
an energy selection, or a combination of both. Let’s denote in the following the data space coordinates by
~d. The expected number of events in an observation i after RoI selection is then given by

ei(~d) = wi(~d) ×Mi(~d) (1)

where Mi(~d) is the expected number of events (computed from a model) before the RoI selection, and wi(~d)
is the RoI window function that is 1 inside the RoI and 0 outside. For stacked analysis the data space
is represented by a counts cube, and the RoI can only partially overlap with some of the cube bins. The
partial overlap can for example be spatially or in energy. The window function can then be generalised into
an function given the fractional overlap of a counts cube bin with the RoI, and this function takes values
between 0 and 1.

Let’s now consider the stacking of two observations into a single counts cube (the reasoning can be easily
extended to an arbitrary number of observations). The expected number of events in the stacked counts
cube is then given by

e(~d) = w1(~d)M1(~d) + w2(~d)M2(~d) . (2)

We are now seeking for a weighting function w(~d) of the stacked observation so that we can simply write
the expected number of events as the product between the weighting function and a stacked model, i.e.

e(~d) = w(~d) ×
(
M1(~d) +M2(~d)

)
. (3)

Combining Eq. (2) and Eq. (3) results in

w(~d) ×
(
M1(~d) +M2(~d)

)
= w1(~d)M1(~d) + w2(~d)M2(~d)

w(~d) =
w1(~d)M1(~d) + w2(~d)M2(~d)

M1(~d) +M2(~d)

w(~d) = w1(~d)
M1(~d)

M1(~d) +M2(~d)
+ w2(~d)

M2(~d)

M1(~d) +M2(~d)
(4)

which means that the weighting function for the stacked observation is the sum of the weighting function
of the individual observations, weighted by the relative contribution of the model in the individual obser-
vations. The obvious problem is that the relative contribution of the model in the individual observations
is in not available in a stacked analysis.

3 Ignoring partial overlap

Suppose we can ignore the effects of partial overlap of the RoI with counts cube bins (we could accomplish
this in principle by redefining the bin boundaries so that there is not partial overlap problem). In that case

the window functions of individual observations wi(~d) take the values 0 and 1. We can then distinguish
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four cases for our example of stacking two observations:

w(~d) =



1 w1(~d) = 1, w2(~d) = 1

M1(~d)

M1(~d) +M2(~d)
w1(~d) = 1, w2(~d) = 0

M2(~d)

M1(~d) +M2(~d)
w1(~d) = 0, w2(~d) = 1

0 w1(~d) = 0, w2(~d) = 0

(5)

For all data space coordinates that fall in both RoIs the stacked weighting function is 1, while for all
coordinates that fall outside both RoIs the stacked weighting function is 0. In case that the data space
coordinate ~d falls in the RoI of the first observation but outside the RoI of the second observation the
weighting function becomes

w(~d) =
M1(~d)

M1(~d) +M2(~d)
(6)

which is smaller than 1 for all coordinates ~d for which M2(~d) > 0. These coordinates correspond to zones
that fall outside the RoI of the second observation, hence the reduction of the weighting function is
due to the spill over of events from the second observation coming from outside its RoI into the stacked
observation.

A solution to this problem is to avoid the spill over, and to set M2(~d) = 0 for all ~d outside the RoI. In other
terms

M̃i(~d) = wi(~d) ×Mi(~d) (7)

The issue here is that this cannot be done in an exact way for sky models, since they are defined in the
physics space and not the data space, hence PSF blurring or energy redistribution cannot be taken into
account properly. It nevertheless is probably still the best (maybe the only?) solution to limit the effect of
the spill over problem.

4 Taking into account partial overlap

In case we want to take into account the partial overlap of counts cube bins with the RoIs we need to
compute Eq. (4). In general, the model can be factorised into

Mi(~d) = Ri(~d) × τi (8)

where Ri(~d) is an event rate and τi is the livetime of the observation i. Equation 4 can then be rewritten
as

w(~d) = w1(~d)
R1(~d) × τ1

R1(~d) × τ1 +R2(~d) × τ2
+ w2(~d)

R2(~d) × τ2

R1(~d) × τ1 +R2(~d) × τ2
(9)

We can still apply the logic of setting Ri(~d) = 0 outside the RoI, but there will be bins (specifically in
energy) for which the RoIs of both observations will have partial overlap, and we need to compute Eq. (9)
explicitly.

For this we may consider some special cases. The first is that R1(~d) ≈ R2(~d) which would be the case if
both observations share roughly the same pointing and have the same energy threshold. We can then drop
the Ri(~d) from Eq. (9) and get

w(~d) ≈ w1(~d)
τ1

τ1 + τ2
+ w2(~d)

τ2
τ1 + τ2

(10)
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hence the weighting function for the stacked analysis is the sum of the weighting functions of the observa-
tions, weighted by their respective livetimes.

Another special case is that there is negligible overlap between both observations, hence R1(~d) ≈ 0 where

R2(~d) is non-zero, and vice versa. Then all fractions in Eq. (9) become unity and we get

w(~d) ≈ w1(~d) + w2(~d) . (11)

We can also consider the special case R1(~d) × τ1 � R2(~d) × τ2 for which Eq. (9) is approximated by

w(~d) ≈ w1(~d) + w2(~d)
R2(~d) × τ2

R1(~d) × τ1
≈ w1(~d) . (12)

This illustrates that the weighting function taking into account partial overlaps can take different forms
dependent on the relative weights of the Ri(~d) or Mi(~d), and there is no obvious way of how to do this

properly without knowing the individual Mi(~d) or making an assumption about them.


