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1 Introduction

Lookups play a key role in the analysis of H.E.S.S. data. They are used to extract
parameters describing the performance of the instrument that are obtained from Monte
Carlo simulations for the most cases. The radial acceptance curves are an exception.
They are determined from OFF runs containing no strong γ-ray sources instead.
Internally, lookups are stored as a set of ROOT histograms, with each histogram corre-
sponding to a given set of parameters. When a lookup is queried for a certain parameter
set ~x, the neighbouring histograms, belonging to the parameter sets closest to ~x are
retrieved and a suitable linear interpolation is performed.
Prior to the development of the lookup scheme described in this document, there was
no generic structure for lookups in the framework of hap, but lookup classes were imple-
mented in a rather inflexible way, only allowing queries with a limited number of param-
eters. In addition, users of hap had to split their run lists by the number of telescopes
in a run and manually indicate the correct azimuth (north/south) and optical efficiency
configuration (phase 1/1b) for the analysis. The filling of lookups was not integrated in
hap and was not well documented. The recent refurbishment of H.E.S.S. mirrors lead to
quickly changing configurations in terms of optical efficiencies. And with the addition
of HESS-II, the energy threshold of the array will be lowered, mandating careful treat-
ment of the effects of the geomagnetic field on low-energy showers and therefore of the
dependence of shower parameters on the azimuth angle.
In order to cope with these issues, a new lookup scheme offering much more flexibility
was developed and implemented. The core class for storing, retrieving and interpolating
information from lookups is the InstrumentResponse (IR), and the new lookup scheme
is therefore called the IR-based lookup scheme. It comprises Maker classes and utility
programs for filling lookups, all conveniently controlled by a single script, user-friendly
classes for querying lookups, as well as small test scripts for plotting information stored
in lookups.
To summarize, the new IR-based lookup scheme was created with the following goals in
mind:

• Make hap analysis more user-friendly and flexible.

• Cope with quickly changing configurations in terms of optical efficiency.

• Prepare for H.E.S.S.-II analysis.

• Transparent filling of lookups in the framework of hap.

This document is intended to be of use for both the casual hap user and the hap devel-
oper. The former will be especially interested in section 2 which contains an overview
of all the lookups used in hap analysis and explains how to benefit from the new IR-
based lookup scheme. Important technical issues are treated in section 3. Section 4 is
aimed at the expert user wishing to learn more about the powerhorse of the new lookup
scheme, the InstrumentResponse class. Filling and creating lookups in the first place
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is discussed in section 5. Finally, open issues and points for future developments are the
topic of section 6.
More information on lookups in the framework of H.E.S.S. analysis can be found in [1],
[2] and [3].

2 Lookups in the hap analysis

An overview of the lookups currently in use in the hap analysis is given in table 1 which
lists the filenames, the lookup histogram names, the parameters that each response
function depends on and the meaning of the lookup histogram axes for each lookup.
More details are given in the following subsections. The response functions accessible by
the lookups typically depend on a source position of interest on the sky, specifically on the
zenith and azimuth angles as well as the offset from the observation position. In addition,
all lookups except for the radial acceptance are filled for different configurations in terms
of optical efficiencies of the four telescopes. Such a configuration will be referred to as a
“phase” in the following. Lookups for array-specific parameters such as effective area or
point-spread function also depend on the telescope pattern (eq. (5)) of an observation.

The new lookup scheme has been implemented such that the hap user can choose between
the old and new schemes, the new one now being the default. Once lookups prepared
for the IR-based classes have been filled (sec. 5), using the new scheme is as simple as
adding the name of the desired cut configuration to the hap configuration file:

[OPTIONS]

config = std

Note that the names of the cut configurations have been simplified, reflecting the greater
flexibility of the new scheme. Make sure that the $HESSCONFIG variable is set to the
top-level directory containing the new lookups. For the casual hap user, the biggest
immediate effect of the new scheme will be the fact that she no longer has to split her
run list according to 3-telescope or 4-telescope runs and that she does not have to care
whether a source is located towards the north or the south. The old lookup scheme can
be used by setting the Analysis/UseOldLookups flag in the hap configuration file.

2.1 Shape variables

Lookup class: HillasReco::ShapeLookupIR

Shape variables are used in the suppression of the hadronic background. The mean
reduced scaled width is defined as

MRSW =
1

Ntel

Ntel∑
i=1

Wi − 〈W 〉
σW
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where Wi is the width of the shower image in camera i. The mean reduced scaled
length MRSL is defined accordingly. The mean width 〈W 〉 and length 〈L〉 of a photon-
induced shower and their respective fluctuations σW and σL are calculated from Monte
Carlo simulations and stored in lookups. As an example, the shape lookups for one set
of observation parameters are shown in figure 1.
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Figure 1: Shape parameters 〈L〉, 〈W 〉, σL and σW , for a shower arriving from the south,
at a zenith angle of 20◦ and an offset of 1.0◦.

2.2 Energy reconstruction

Lookup class: Reco::EnergyLookupIR

To determine the energy of the primary photon, the shower size, i.e. the amount of
light detected in a camera and measured in photo-electrons, has to be converted to an
energy value for each telescope, depending on the impact distance of the shower to the
telescope. The energy reconstruction lookups are filled from Monte Carlo simulations.
One such raw energy lookup histogram is shown as an example in fig. 2 (left). Figure 2
(right) shows an example of interpolated values for a certain set of query parameters.
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The energy lookups are filled for each telescope and for each phase, using the optical
efficiency at the beginning of each phase, as determined for each telescope from the
analysis of muon rings in the data [4]. In a hap analysis, the lookups are then queried
for the appropriate phase of an observation run, in an effort to minimize the necessary
muon correction. See section 3.1 for more details.
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Figure 2: Left: Example for an energy lookup histogram: Energy as a function of size
and impact parameter, for showers arrving from south, at a zenith angle of 20◦,
an offset of 0.5◦, and for the phase1b optical configuration. Right: Dependence
of interpolated reconstructed energy on impact distance, for the set of query
parameters quoted in the plot title. This plot was generated with the script
presented in sec. 2.8.

2.3 Energy resolution

Lookup class: Flux::EnergyResolutionLookupIR

Knowledge of the energy resolution is needed, for example, for a spectral analysis using
the forward-folding method. The lookup class offers access to the probability density
function (p.d.f.) of reconstructing a primary photon of energy Etrue at an energy of Ereco.
For convenience, following the approach of Hoppe [5], the p.d.f. is stored and returned
as a function of (Ereco − Etrue)/Etrue, given that the true energy is Etrue,

p

(
Ereco − Etrue

Etrue

, Etrue

)
For each bin in log10(Etrue), the p.d.f. is normalized to unit integral, so that interpolated
values will also correspond to a normalized p.d.f. An example of an energy resolution
lookup histogram is shown in fig. 3.
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Figure 3: Energy reconstruction p.d.f. for the same parameters, for an observa-
tion with all four telescopes. The z-scale gives the probability p(Ereco −
Etrue)/Etrue, Etrue), with each projection at fixed energy being normalized to
unit integral.

2.4 Effective area

Lookup class: Response::EffectiveAreaLookupIR

The effective area as a function of energy is needed to convert the numbers of γ-ray
candidates that have been binned in energy into fluxes. It is determined from Monte
Carlo simulations according to

Aeff(E) =
Nsel(E)

NMC(E)
AMC

where AMC is the area used in the Monte Carlo generation and NMC(E) is the number
of Monte Carlo photons generated at an energy E. Nsel(E) denotes the number of γ-ray
candidates surviving all selection cuts applied. The effective area therefore depends on
the selection cuts, and on the θmax cut in particular. Aeff is available as a function of both
the true and the reconstructed energies. Figure 4 contains two example effective area
curves, one as a function of energy and the other one illustrating the zenith dependence
of effective areas.
In addition to querying effective areas, the lookup class also allows the user to calculate
several important quantities related to spectral analysis:

• The energy threshold as defined in section 5.2.2 of reference [2] limits the energy
range usable for flux determination. The trigger threshold (defined by the peak in
the anticipated count rate) and the safe threshold (defined as the energy where the
bias in energy reconstruction drops below 10 %) can also be calculated separately.

• The mean and RMS of the relative energy resolution (Ereco − Etrue)/Etrue can be
used for a quick Gaussian approximation of the energy reconstruction p.d.f.
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Figure 5: Example of a smoothed (green line) and unsmoothed (black histogram) effec-
tive area curve.

• The number of expected counts for a given reference flux can be calculated for a
given energy range, and is used, e.g. in the generation of flux maps [6] and light
curves.

Effective area lookup histograms usually have to be smoothed using an ad-hoc param-
eterization that involves high-order polynomials for non-TMVA configurations and a
series of low-order polynomials for TMVA configurations, to account for the steps in
γ-ray efficiency due to the energy bands used in the training of the classifier. The effect
of smoothing is shown for one example in figure 5.

Effective areas are available for 3- and 4-telescope configurations, in an effort to keep
the number of configurations and thereby the time spent on filling the lookups and file
sizes limited. The number of usable 2-telescope runs only amounts to a few percent of
the total.
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2.5 Point spread function

Lookup class: Flux::PSFLookupIR

The PSF describes the angular spread of reconstructed photon positions due to the
limited resolution of the instrument and is determined from Monte Carlo simulations.
It can be calculated for a fixed energy or averaged over a given energy range with an
assumed spectral index or averaged over an energy range and a given distribution in
zenith and offset. PSF information is stored in raw lookup histograms like the one
depicted in figure 6, as the probability density function f(θ2, E) for reconstructing a
primary photon of energy E at an offset θ from its true location. Each energy bin is
normalized to unity, ∫

f(θ2, E) dθ2 = 1 (1)

This means that we can interpolate distributions, to match any set of parameters in a
lookup query. For generic parameters x1 and x2 with corresponding PSF distributions
f1 and f2, the interpolated PSF at parameter x is then

f(θ2, E) =
x− x1

x2 − x1

f2(θ2, E) +
x2 − x
x2 − x1

f1(θ2, E) (2)

and is found to be normalized to unity as well.
In the most general case, the calculation of the averaged PSF for a given set of observa-
tion runs proceeds as follows. Given the distribution of zenith angle ζ and offset angle δ
as well as the mean azimuth angle ϕ, telescope pattern p and optical configuration εopt

for each run, the (unnormalized) PSF can be calculated if a source spectrum φ(E) is
assumed:

f(θ2) =
∑
runs

∑
E

∑
x

Nexp(x,E) · f(θ2, x, E) (3)

where the number of expected counts is defined as

Nexp(x,E) =

E+∆E/2∫
E−∆E/2

φ(E ′)Aeff(x,E ′)w(x)T dE (4)

Here, T is the livetime of the run, w is the fraction of livetime spent in each zenith/offset
bin, x ≡ (ζ, ϕ, δ, p, εopt) and the effective area Aeff is taken from the effective area
lookup. Equation (3) means that the PSF is calculated as a weighted sum, with the
number of expected signal counts for each contributing set of parameters taken as the
weight. The individual contributions f(θ2, x, E) can be accessed via the lookup class
Flux::PSFLookupIR. The final f(θ2) can then be normalized to unity and used in the
analysis.

9



log10(E/TeV)
-1 -0.5 0 0.5 1 1.5 2

2
 / 

de
g

2 θ

0

0.05

0.1

0.15

0.2

0.25

ps
f-

va
lu

e 
/ a

.u
.

10

20

30

40

50

60

70

80

90

ThetaSq_muon101_30telp_180azm_20deg_0.5off

Figure 6: Example of a raw lookup histogram used in the calculation of the PSF. The
PSF is normalized to unit integral in each energy bin.

2.6 Extracting the PSF

• Run a hap analysis to produce run-wise BgStats objects, e.g. using the ring back-
ground method.

• Run a hap analysis to extract a spectrum, using the reflected background method.
The spectral index is needed for the calculation of the PSF (eqs. (3) and (4)).

• Use the ExtractPSF tool to calculate the PSF and store it in a ROOT file.

ExtractPSF --inputfile hap.root --psffile psf.root

--spectralIndex 2.5

• Use the Flux::PSFInfo class to access information on the PSF.

Flux : : PSFInfo∗ ps f = Flux : : PSFInfo : : ReadFromFile ( ” p s f . root ” ) ;

See the hddst/scripts/lookups/test PSF.C script for some examples on how to use
the Flux::PSFInfo object. Note that there are now convenience functions in Plotters::SkyHist

for plotting the PSF into a corner of a sky map.

As the binning of the PSF lookup histograms is rather coarse, a suitable parametrization
should be fitted to the calculated PSF histogram and used in the analysis. By default,
the PSFInfo class uses a sum of three exponentials in θ2 for this, which has been found
to work well in general.
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Figure 7: Left: Model for the radial acceptance for the zenith angle range from 0◦ to
20◦. Right: Acceptance curves for two different thresholds, for the same zenith
angle range.

2.7 Radial acceptance

Lookup class: Background::AcceptanceLookupIR

The relative acceptance of the instrument for cosmic-ray events over its field-of-view is
important for the calculation of α and thus for the background estimation. It is usually
determined from OFF data, i.e. from dedicated OFF runs or from observation runs of
sources that do not show a substantial γ-ray signal. The acceptance is assumed to be
a function of (∆Ψ)2, i.e. to be radially symmetric around the observation position. It
is normalized to have unit value at the peak. Figure 7 (left) contains an example of a
radial acceptance model.

The radial acceptance varies strongly with energy, as illustrated in figure 7 (right). It
is sometimes desirable or necessary to restrict the energy range of an analysis. For ex-
ample, in order to create an RGB map of a source, three analyses with different energy
ranges have to be performed. For the calculation of a flux map, only photons with
energies above the safe energy threshold will usually be considered. In these cases, the
correct acceptance curves have to be used. The new acceptance lookup offers convenient
access to acceptance curves for any energy range set by the user. As statistics can be
an issue for high energies and/or high zenith angles, acceptance curves can be smoothed
using a sliding-window polynomial fit. The smoothing parameters can be set in the hap

configuration file and should be tested, e.g. with the methods provided in the test script
test radialAcceptance.C (sec. 2.8).
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An alternative way is to determine the radial acceptance from the data on a run-by-
run basis. See [1] for an extensive discussion of the radial acceptance in the context of
H.E.S.S. analysis.

2.8 Examples and tests

It has been checked that the old and new lookup schemes give identical results for lookup
queries where expected. Small ROOT scripts showing how to query each lookup and
plot information from it are available:

$HESSROOT/hddst/scripts/lookups/test_effArea.C
$HESSROOT/hddst/scripts/lookups/test_energy.C
$HESSROOT/hddst/scripts/lookups/test_energyPDF.C
$HESSROOT/hddst/scripts/lookups/test_energyResolution.C
$HESSROOT/hddst/scripts/lookups/test_PSF.C
$HESSROOT/hddst/scripts/lookups/test_radialAcceptance.C
$HESSROOT/hddst/scripts/lookups/test_shape.C

3 Technical issues

3.1 Dealing with changing optical efficiencies

The optical quality of the telescope system degrades over the years. Mirror refurbish-
ments on individual telescopes are conducted to counteract this effect, but additionally
complicate the situation from the analyzer’s point of view as they cause discontinuities
in the optical efficiency of the system. Figure 8 shows the optical efficiency reconstructed
for CT3 over time, illustrating both the slow degradation in optical efficiency and the
sudden improvement after the first mirror refurbishment. The optical efficiency ε of the
system is derived from an analysis of muon rings in the data and expressed in units
of p.e./photon. Monte Carlo simulations are done with a fixed set of optical efficien-
cies for the telescopes, and different sets are available, labeled phase1 for the start of
H.E.S.S., phase1b for the situation after a few years of running, roughly around the
year 2007, phase1c for the state immediately before the first mirror refurbishment, and
phase1c1 and phase1c2 for the state after the mirror refurbishments on CT3, CT2, re-
spectively. Optical efficiencies corresponding to the various MC sets are stored in the
Monitor Run Muon table in the H.E.S.S. database, with run 100 corresponding to phase1,
run 101 corresponding to phase1b, and so on.
As a consequence of the complicated situation with vastly different optical configurations
for all telescopes, the affected lookups (effective areas and PSF) now store information
as a function of the telescope pattern p,

p =
∑

CT n in run

2n (5)
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Figure 8: Optical efficiencies as reconstructed by the calibration tools for CT3, as a
function of run number. The horizontal lines correspond to available sets
of Monte Carlo data. This plot can be produced for all telescopes with the
hddst/PlotMuonEfficiencies tool.

The strategy for dealing with varying optical efficiencies can be summarized as follows.
Energy is calculated on a per-telescope basis. Energy lookups for the best-guess optical
configuration are used, chosen such that the necessary muon corrections are minimized
(see Muon::OpticalConfiguration in muon/src/MuonTimes.C). The corrected energy
is then calculated using the muon correction factors (one for each telescope), determined
for the given run,

ci =
εMC,i

εdata,i

(6)

For the shape lookups, the optical configuration is an additional parameter in the
lookup, and again the best-guess configuration is used. The dependence of shape pa-
rameters on optical efficiency is weak though because they are stored as a function of
size, not energy.
Effective areas are interpolated based on the averaged correction factors,

C =
1

Ntel

∑
ci (7)

as

Aeff =
C − C1

C2 − C1

A2 +
C2 − C
C2 − C1

A1 (8)

where A1 and A2 are the effective areas evaluated for the two MC configurations brack-
eting the observation, C1 = 1 by construction, and C2 is the muon correction factor
for the second MC configuration with respect to the first. Thresholds are computed for
fixed optical configurations and then interpolated for optical efficiencies as in eq. (8) as
well.
For observations during the mirror refurbishment campaign, effective areas are not in-
terpolated but assumed to be constant over the six months between mirror upgrades.
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3.2 Azimuth interpolation

As shown in [7], the effect of the geomagnetic field on the shower development is best
taken into account by interpolating response functions based on the angle between the
shower direction and the direction of the geomagnetic field. Linear interpolation is
sufficient to a very good approximation. As a consequence, the dependence of quantities
on azimuth looks like that shown for the example of an effective area in figure 9.
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Figure 9: Dependence of effective area on the azimuth angle of a source.

3.3 Smoothing

As Monte Carlo statistics are limited and raw lookup histograms filled from simula-
tions do not cover the parameter space in size and impact distance that corresponds to
extremely high energies, shape and energy lookups are smoothed and extended. The
algorithms have been copied from the old lookup scheme. The effect of smoothing and
extending is visible, e.g. in the lookup histograms presented in figures 1 and 2.

3.4 Uncertainties on interpolated values

The statistical uncertainty on an entry in a lookup histogram is determined by the
available Monte Carlo statistics used for filling the lookup. Let a1 ± σ1 and a2 ± σ2 be
two lookup values with their respective uncertainties, and c1 and c2 be the corresponding
parameters. Then, assuming a Gaussian distribution with mean ai and variance σ2

i for
the two values, we can define corresponding random variables A1 and A2 and calculate
the variance for the interpolated variable

A ≡ c− c1

c2 − c1

A2 +
c2 − c
c2 − c1

A1
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at parameter c. The result is found to be

σ2
A =

σ2
1(c2 − c)2 + σ2

2(c− c1)2

(c2 − c1)2
(9)

4 The powerhorse: InstrumentResponse

The core class responsible for storing and accessing lookup histograms as well as inter-
polating for a given query is the Response::InstrumentResponse. Internally, it stores
pointers to lookup histograms, that can be spread across several ROOT files, and loads
the histograms into memory as needed. The storage structure is a tree-like hierarchical
structure, as visualized in figure 10, where each level corresponds to a different lookup
parameter. As a consequence of this data structure, accessing and interpolating lookups

zenith

offset

azimuth 0 deg 90 deg 180 deg

0 20 30

Figure 10: Internal structure of the InstrumentResponse class. The bottom node con-
tains ROOT TH1, TH2 or TProfile histograms.

of (almost) arbitrary depth (=number of parameters) is greatly simplified by using recur-
sive function calls. Lookup classes store pointers to one or more InstrumentResponse

objects as data members and offer wrapper functions used to query a lookup.

In the following, some of the internal workings of the IR-class are detailed. The casual
hap user does not need to worry about these details.

For a typical interpolation, a vector<double> of parameters of the appropriate length is
passed to the Interpolate function. Histograms are then accessed by name. The nam-
ing scheme of the lookup histograms is given to the respective instance of InstrumentResponse
at construction time. Let us look at the commands for creating a lookup class to ex-
tract effective areas (see the static convenience functions in InstrumentRepsonse and
the constructors of the lookup classes): The following assumes that the effective area
histograms have names like

EffArea_TrueEnergy_muon101_30telp_0azm_60deg_1 .0 off_Func
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unsigned i n t nparam = 5 ;
i n t ndim = 1 ;

std : : vector<Response : : ParameterType> types (nparam , Response : :UNDEF) ;
types [ 0 ] = Response : : DISCRETE;
types [ 1 ] = Response : : DISCRETE;
types [ 2 ] = Response : :AZIMUTH;
types [ 3 ] = Response : : ZENITH;
types [ 4 ] = Response : : OFFSET;

std : : s t r i n g names =
std : : s t r i n g ( ” optEff , TelPattern , azimuth , zen i th , o f f s e t , energy ” ) ;

s td : : s t r i n g p r e f i x e s = std : : s t r i n g ( ”muon , , , , ” ) ;
s td : : s t r i n g s u f f i x e s = std : : s t r i n g ( ” , te lp , azm , deg , o f f ” ) ;

Response : : InstrumentResponse ∗ i r =
new Response : : InstrumentResponse ( nparam , ndim ) ;

i r−>SetBaseName ( ” EffArea TrueEnergy ” ) ;
i r−>Se tG loba lSu f f i x ( ”Func” ) ;
i r−>SetParameterNames ( names . c s t r ( ) ) ;
i r−>SetParameterPre f ixes ( p r e f i x e s . c s t r ( ) ) ;
i r−>SetParameterSu f f i xe s ( s u f f i x e s . c s t r ( ) ) ;
i r−>SetParameterTypes ( types ) ;

i r−>Read ( f i l ename ) ;

In the code snippet, we first define the number of lookup parameters and the dimension
of the lookup histograms. The parameter types defined next determine how interpola-
tion for a given parameter is handled and how a parameter value is converted to a string
for the purpose of getting a lookup from a file. Table 2 contains the details. Then, the
naming scheme is set up, by defining a base name which is the first string in each his-
togram name, a global suffix terminating the histogram names, and prefixes and suffixes
for each parameter value, given as comma-separated lists. Using this information, the
internal data structure can then be built by reading the keys of a ROOT file containing
the lookup histograms.
The special case of the energy lookup interpolating between values of log10(E) is taken
care of by calling SetInterpolateBetweenLogValues(true).
Energy and shape lookups are a special case in that we do not want to reject events
with reconstructed offsets or zeniths that are little bit out of bounds. This is taken care
of by calling SetAllowSettingValueToOuterBound(true).
The internal structure of a lookup can be revealed by calling PrintLookupArray().
During filling, histograms can be stored in the lookup structure by the Store function.

5 Filling lookups

In the new lookup scheme, the process of filling lookups is implemented completely within
the framework of hap. All the necessary steps are conveniently controlled by the script
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parameter behaviour
Response::UNDEF default behaviour, most importantly, simple linear in-

terpolation between values is done.
Response::ZENITH Linear interpolation is done between cos(z1) and cos(z2),

zi being the zenith angles.
Response::OFFSET Values are converted to strings using a precision of one

digit behind the decimal point.
Response::AZIMUTH Interpolation is done based on the angle between the

shower direction and the geomagentic field.
Interpolation over the full circle of azimuth is possible af-
ter calling the DuplicateAzimuth function once (e.g. in
the constructor of the lookup class). Pointers to the his-
tograms belonging to the lowest available azimuth value
φ are duplicated for φ + 2π so that neither CPU time
nor memory are wasted.

Response::DISCRETE No interpolation is performed for this parameter.
Queries have to match one of the available parameters
exactly.

Response::INTERVAL As DISCRETE, but available parameter values are treated
as interval boundaries during filling. This is needed for
the radial acceptance lookup, which is filled for bands
in zenith angle.

Table 2: Parameter types used in InstrumentResponse.

fillLookups.pl, located in hddst/scripts/lookups. It is assumed that Monte Carlo
DSTs have been produced and are stored in a directory structure like that in Heidelberg
(as encoded in the get mc runlist subroutine of fillLookups.pl). Section A contains
hints on how to produce Monte Carlo DSTs and deal with them in the context of the
lookup scheme.
Assuming that the $HESSROOT/hddst/scripts/lookups directory is in your $PATH,
a typical procedure for filling lookups for a given cut configuration (std cuts in the
examples below) is as follows: First, change directory to the desired top-level directory
where lookups will be stored. Note that the θ2 cut has to be fixed before filling lookups
and then quoted using the --thetaSqr option. Start by creating the necessary directories
and copying the analysis config file:

fillLookups.pl --config std --task Prepare --thetaSqr 0.0125

Produce the energy and shape lookups first because they are needed for the generation
of the effective area lookups:

fillLookups.pl --config std --task EnergyShape
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fillLookups.pl --config std --task MergeEnergyShape

Then, produce the effective area, PSF, and energy reconstruction lookups:

fillLookups.pl --config std --task EffArea --thetaSqr 0.0125

fillLookups.pl --config std --task MergeEffArea

The last step is the production of the radial acceptance lookups

fillLookups.pl --config std --task RadAcc

fillLookups.pl --config std --task MergeRadAcc

and the radial acceptance lookups for OFF data as needed by the template background
maker:

fillLookups.pl --config std --task RadAcc --off

fillLookups.pl --config std --task MergeRadAcc --off

The experienced user can use a single task for the entire process:

fillLookups.pl --config std --task complete --thetaSqr 0.0125

For cut configurations involving the Heidelberg TMVA (“zeta”) analysis, the procedure
is a bit more complicated, as the lookups needed for the TMVA training have to be
produced before the training can be performed. When the training is complete, the
remaining lookups can then be produced. See section B of the appendix for more details.
Help on the fillLookups.pl script and a list of available options can be found by typing

perldoc fillLookups.pl

For reference, table 3 contains the Makers and programs involved in filling the lookups
discussed above. The fillLookups.pl script creates hap config files for filling lookups

lookup makers and programs
shape, Reco::EnergyAndShapeLookupMaker

energy hddst/src/ProcessEnergyAndShapeLookups.C

hddst/src/MergeLookups.C

eff. area, Flux::EffectiveAreaMaker

PSF, hddst/src/ProcessEffectiveAreas.C

energy res. hddst/src/MergeLookups.C

rad. acc. Background::AcceptanceLookupBgMaker

hddst/src/ProcessRadialAcceptance.C

hddst/src/MergeLookups.C

Table 3: Makers and programs used in lookup filling with hap.

based on the templates located in
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$HESSROOT/hddst/scripts/lookups/config

The workflow for filling lookups can be summarized as follows: The Makers listed in
table 3 are used to fill so-called proto-lookups, corresponding to one set of parameters.
The Process... tools then perform tasks to enhance the usability of the lookups,
e.g. smoothing and extending. The final lookup files containing the histograms for all
parameter sets are produced by the MergeLookups task. Lookup classes for accessing
the response functions stored in the lookups are set up and are the main interaction
point for the hap user.

6 Open issues

In this section, the most obvious points for future improvement and development of the
lookup scheme as well as some points for discussion are given.

• Adapt French analysis to use new lookup scheme if desired.

• What about H.E.S.S.-II? Adding the fifth telescope will increase the number of
telescope configurations even more.

• Energy and shape lookups:

– There is a difference for ln(size) & 12 compared to old lookups, likely related
to the ExtendNicely/Smoothing functions carried over from the old scheme.
Maybe introduce a warning when a query is made for such a high number.
How reliable is the ExtendNicely for regions with low MC statistics anyway?

• Effective area lookups:

– The polynomial fit used for smoothing does not always work well, and it does
not include the points at the lowest energies. At the moment, effective areas
for non-TMVA configurations are smoothed in two iterations, to increase sta-
bility: After the first round of polynomial fits is complete, all effective areas
are refitted using the best-fit parameters found for a set of similar configura-
tions as start values and then using the χ2 to find the best parametrization
among the resulting curves, which is then used for the smoothing.

• PSF lookups:

– Use a finer binning and smaller θ2 range when filling lookups.

– Try to find a simpler parametrization for fitting the PSF histogram. Stycz [8]
uses a modified Student’s t-function with apparently good success.

• Radial acceptance lookups:

– Investigate using all extragalactic runs as OFF runs by cutting out wedges
containing the known sources.
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– Zenith is given as range here because the lookups are generated from OFF
runs. How do we interpolate correctly?

– Is the acceptance really radially symmetric, especially after mirror refurbish-
ments?

– Make sure source candidates (also weak ones) are excluded in lookup gener-
ation.

– Use finer zenith binning?

– Dependence on time interval seen, possibly due to changing optical efficien-
cies. Can we take this into account?

– Investigate smoothing with high-dimensional polynomial instead.

• It would be great if we could put all information on optical efficiencies into the
DSTs and get rid of the dependence on the database. We could also just merge the
three muon parameter classes and the two reader classes to make things simpler.

• As an alternative to the currently implemented lookup scheme, one could think
about lookups that are custom-made for each run, i.e. filled from Monte Carlos
generated with the appropriate telescope pattern, optical efficiency of the telescope
system, zenith angle of the observation, and so on. The only remaining paramter
for an interpolation would be the offset angle. Such an approach would reduce
systematic effects and is likely to be the only viable option for large telescope arrays
like CTA, where the number of possible telescope patterns becomes enormous.

A Dealing with raw Monte Carlo simulations

Here, we briefly sketch the necessary steps to prepare new Monte Carlo simulations for
use in filling lookups. This might become necessary, e.g. after a mirror refurbishment
campaign.

• Produce MonteCarlo DSTs. You can use the produce DSTs task in the script
hddst/scripts/produce MC DSTs.pl for this, after changing the directory paths
at the top of the script.

• Check integrity of the DSTs. For example, use the check DSTs task of the
produce MC DSTs.pl script.

• Extract muon efficiencies. Run the extractMuonEff task in the produce MC DSTs.pl

script. Then, run the hddst/McMuonEff task on the resulting *muonEff*.root

files. Read off the mean muon efficiencies corresponding to the given set of simu-
lations.

• Update the database table Monitor Run Muon with the new muon efficiencies.
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ssh hess@lfs4

dbeditor -C calib

Select the Monitor Run Muon table. Run numbers for Monte Carlo configurations are
numbered from 100 upwards. Enter the condition Run=103 and press Ctrl+L to see an
example. Add the entries and use insert new to save.

• Determine a suitable time frame to use for the new configuration and update the
functions in Muon::MuonTimes accordingly. The hddst/PlotMuonEfficiencies

tool may prove useful for this.

• Copy the DSTs to the hess account.

• Adapt the fillLookups.pl script to include the new configuration if necessary,
as explained in its header.

B Producing lookups for Heidelberg TMVA configurations

Use the --zeta and --zetaFile options of fillLookups.pl for correct handling of zeta
configurations!

• Make sure the ScaleInfoOff lookup is present. A raw version of this can pe pro-
duced using the TMVA tools. (Ask the TMVA expert.) Then, use the ShapeOff

task of fillLookups.pl and the --rawScaleOffFile option to produce the final
ScaleInfoOff lookup.

• In addition, produce the energy and shape lookups.

• Run the TMVA training.

• Then, continue with lookup production. The remaining lookups will depend on
the event selection done by the TMVA analysis, which is why the training has to
be performed before the high-level lookups can be filled.
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