
GammaLib Tech-Note

Response computations
GammaLib-TN0003

Version: 1.0
11 April 2020

Author: Jürgen Knödlseder
Approved by: Jürgen Knödlseder

Institut de Recherche en Astrophysique et Planétologie (IRAP)
9, avenue du Colonel-Roche

31028 Toulouse Cedex 4
FRANCE



GammaLib Response computations ii

This page intentionally left blank



GammaLib Response computations iii

Contents

1 Scope 1

2 Current implementation 1

3 Modifications for binned analysis 2

4 Implementing pre computation 2

5 Gradients of spatial parameters 3

5.1 Point source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.2 Gaussian source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



GammaLib Response computations 1

1 Scope

This technical note suggests a modification of the response computation that is useful for binned analysis
and that can lead to a speed-up of the model fitting of extended models. The note relates to the Redmine
issue 3203 (see https://cta-redmine.irap.omp.eu/issues/3203).

2 Current implementation

The GObservation::likelihood poisson binned() method computes the log-likelihood, gradients and
curvature matrix using the following formulae:

− lnL =
∑
i

ni ln ei − ei (1)

∂ lnL

∂al
=
∑
i

(
1− ni

ei

)
∂ei
∂al

(2)

∂2 lnL

∂al∂am
=
∑
i

(
ni
e2i

)
∂ei
∂al

∂ei
∂am

(3)

with ni being the number of observed events and ei the number of predicted events, and al the model
parameters. Now

ei = ẽi ×∆i (4)

∂ei
∂al

=
∂ẽi
∂al
×∆i (5)

where ∆i is the bin size of event i and

ẽi =
∑
k

Mk,e(E)×Mk,t(t)×
∫
p

Mk,p(p)Ri(p,E, t)dp (6)

for a sky model, with Ri(p,E, t) being the Instrument Response Function, andMk,e(E), Mk,t(t) andMk,p(p)
the spectral, temporal and spatial components of the sky model. The gradients for spectral parameters are
computed using

∂ẽi
∂al

=
∑
k

Mk,t(t)×
∂Mk,e(E)

∂al
×
∫
p

Mk,p(p)Ri(p,E, t)dp (7)

and for temporal parameters using

∂ẽi
∂al

=
∑
k

Mk,e(E)× ∂Mk,t(t)

∂al
×
∫
p

Mk,p(p)Ri(p,E, t)dp (8)

For spatial parameters no analytical computation is possible and the gradients are computed using a
difference method

∂ẽi
∂al

=
∑
k

Mk,e(E)Mk,t(t)
∫
p
Mk,p(p|al + h)Ri(p,E, t)dp−Mk,e(E)Mk,t(t)

∫
p
Mk,p(p|al − h)Ri(p,E, t)dp

2h

(9)



GammaLib Response computations 2

3 Modifications for binned analysis

The costly factor in model fitting of extended models is the evaluation of the integrals

Ii,k =

∫
p

Mk,p(p)Ri(p,E, t)dp (10)

hence the convolution of a spatial model with the Instrument Response Function Ri(p,E, t). In the current
implementation this convolution is done independently for every event.

The most time-consuming part in the evaluation of the integral are the coordinate transforms that map
p′ into p, and to transform from the sky system to a local system of the model (or the instrument). For
binned analysis, many events share the same p′ (for example all events in a same spatial pixel but with
different energies). Hence computation time can be saved when doing the coordinate transform only once
for all events that share the same spatial direction. Eq. 10 should therefore be evaluated for bunches of
events.

Since the likelihood computation needs to sum the contribution for each event (see Eq. 1) the evaluation
of event bunches cannot be done within the event loop. Some pre computation is needed before entering
the computation of Eq. 1.

Here is a possible scheme that could be implemented:

• Before entering the event loop, GObservation::likelihood poisson binned() pre computes the

integrals Ii,k for all sky models. In case that a sky model has free parameters, also the gradients
∂Ii,k
∂al

with respect to all free parameters al are pre computed.

• The GResponse::eval prob() method checks whether for a given model pre computed Ii,k are avail-
able. If yes, instead of calling GResponse::irf spatial the method will use the pre computed Ii,k.

• The GResponse::eval prob() method deals also with the numerical computation of the gradients
∂Ii,k
∂al

for all free sky model parameters. This allows to use the pre computed gradients
∂Ii,k
∂al

instead.
For all parameters for which spatial gradients exist, GResponse::eval prob() will set the has grad()

flag, so that numerical gradients are no longer computed in GObservation::model().

In the case that energy dispersion should be considered, Ii,k and
∂Ii,k
∂al

would be needed for an important

number of true photon energies (33 in the current implementation). This would be very likely unman-
ageable. An approximation can be made, however, that uses the measured energy E′ instead of the true
energy E for the computation of Eq. 10. Energy dispersion would still be applied for the spectral model
component, yet it would be assumed that the Ii,k and

∂Ii,k
∂al

would be constant under small variations
of E. In that case the energy dispersion integration should be moved from GResponse::convolve() to
GResponse::eval prob() so that it only applies to the spectral part of the model, and consequently, the
spectral gradients should be also computed numerically in this modified GResponse::eval prob() method.
Then, the special treatment for energy dispersion in GObservation::model(), where for the moment all
gradients are computed numerically, will not be needed anymore.

4 Implementing pre computation

Currently, Eq. 10 is computed for every event using the method

virtual double irf_spatial(const GEvent& event,

const GSource& source,

const GObservation& obs) const;



GammaLib Response computations 3

To benefit from common computations for all events a method needs to be implemented returning a vector
Ii,k for all events in an observation

virtual GVector irf_spatial(const GSource& source,

const GObservation& obs) const;

This would have the advantage that the event loop can be put in the innermost possible place, avoiding
to repeat any computations that do not need to be repeated for every event. This means that a the class
GIntegral, that is widely used for the IRF integration, must be extended to support vector integration.
Specifically, it must provide a method

GVector GIntegral::trapzd(const double& a,

const double& b,

const int& n,

GVector result);

and a method

GVector GIntegral::romberg_vector(const double& a,

const double& b,

const int& order)

to support vector integration. Furthermore, a new class GFunctions is needed that provides

virtual GVector eval(const double& x) = 0;

and that can be used to implement the integration kernels. GIntegral must be able to hold a pointer to
such a kernel, and constructor and kernel access methods need to be added:

explicit GIntegral(GFunctions* kernel);

void kernel(GFunctions* kernel);

const GFunctions* kernel(void) const;

5 Gradients of spatial parameters

Using the definition of the gradient

∂f(x)

∂x
= lim

h→0

f(x+ h)− f(x− h)

2h
(11)

and applying the integral sum rule∫
f(x) + g(x)dx =

∫
f(x)dx+

∫
g(x)fx (12)

one can write

∂Ii,k
∂al

= lim
h→0

∫
p
Mk,p(p|al + h)Ri(p,E, t)dp−

∫
p
Mk,p(p|al − h)Ri(p,E, t)dp

2h
(13)

= lim
h→0

∫
p

(Mk,p(p|al + h)−Mk,p(p|al − h))Ri(p,E, t)dp

2h
(14)

= lim
h→0

∫
p

Mk,p(p|al + h)−Mk,p(p|al − h)

2h
Ri(p,E, t)dp (15)

=

∫
p

∂Mk,p(p)

∂al
Ri(p,E, t)dp (16)



GammaLib Response computations 4

In other words, the gradients of the spatial parameters are simply the model gradients integrated over the
kernel of the response functions.

5.1 Point source

The point source can be considered as a Dirac function δ(x− x0), where x0 is the location of the source in
one dimension. Using

f(x)δ′(x) = −f ′(x)δ(x) (17)

and ∫
f(x)δ(x) = f(0) (18)

it follows ∫
f(x)δ′(x) = −

∫
f ′(x)δ(x) = −f ′(0) (19)

and hence
∂Ii,k
∂al

= −∂Ri(p,E, t)

∂p
(20)

5.2 Gaussian source

f(x) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

(21)

∂f(x)

∂µ
=

1

σ2
√

2π
e−

1
2 ( x−µσ )

2

=
1

σ
f(x) (22)

∂f(x)

∂σ
=

−1

σ2
√

2π
e−

1
2 ( x−µσ )

2

+
1

σ
√

2π
e−

1
2 ( x−µσ )

2 x− µ
σ2

= f(x)

(
x− µ
σ2

− 1

σ

)
(23)


