
11/10/14 20:51Time Standards: UTC, GPS, TAI, and Unix-C times.

Page 1 sur 4http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node311.html

next up previous contents
Next: Function: utctime() Up: GRASP: a data analysis Previous: Example: trackerF Contents

Time Standards: UTC, GPS, TAI, and Unix-C times.
0

The relationship between different time-standards and labels is somewhat complex. The following web sites contains further information about these different time
standards:
ftp://tycho.usno.navy.mil/pub/series/ser14.txt ftp://tycho.usno.navy.mil/pub/series/ser14.txt
ftp://maia.usno.navy.mil/ser7/tai-utc.dat ftp://maia.usno.navy.mil/ser7/tai-utc.dat
http://tycho.usno.navy.mil/time.html . http://tycho.usno.navy.mil/time.html
What is presented here is merely a summary for the perplexed. The situation is complicated slightly because on standard Unix machines (Solaris 2.6, Linux 2.0*, etc) the
time functions in the ``ANSI-standard C library" do not behave according to the rather vaguely-defined ANSI/POSIX standards. (In particular, the gmtime() function in the
C standard library does not know about leap-seconds - although the documentation generally suggests that it should!)

Let us begin by defining a physical time , which is the time coordinate used in physics lectures. It advances linearly, completing each unit step at the same instant that a
perfect pendulum with a frequency of 1 Hz completes a new oscillation. Without loss of generality we will set at the stroke of midnight, January 1, 1970 UTC. This
time is also denoted Jan 1 00:00:00 UTC. Note that we will not discuss local time in this section, which differs from UTC by a fixed number of hours that depend upon
your time-zone and upon whether or not daylight savings time is in effect. We will assume that once you know the UTC time, you can do the necessary addition or
subtraction yourself, to determine local time at any point of interest on the earth.

Universal Coordinated Time (UTC), Global Positioning System (GPS) and International Atomic Time (TAI) are all well-defined global standards. By Unix-C time we
mean here the value of . This is what is returned by the Standard C-library time() function, which advances its output by one every second, starting from Jan 1 00:00:00
UTC, provided that the computer is started at Jan 1 00:00:00 UTC and runs continuously and without error after that. (See below for an explanation of why this
qualification is required!)

UTC should be thought of as a system for attaching "human readable" labels such as ``March 11, 1983, at 12:10" to particular moments in time. (We use ``military" or 24-
hour time to distinguish am and pm.) This is done by advancing in the standard pattern of 1 hour every 3600 seconds, one day every 24 hours, and so on, with two
exceptions. These exceptions are necessary because if they were not made, eventually people in the northern hemisphere would be suffering snowfalls in August.

The first of the two exceptions is easy. Once every four years, according to the pattern 1972, 1976, ... there is a leap year, which is a year containing one extra day. In these
years, February has 29 days not 28. This affects the pattern by which UTC time follows , and is a minor nuisance. However, because it follows a regular deterministic
pattern, leap years with their extra day present no real problems.

The real complications arise because the earth is gradually slowing in its rotation about its axis, from the effects of earth-moon and earth-sun tidal friction, and because the
sunspot cycles affects the heating of the earth and thus its mass distribution and moment of inertia. These effects are not easily predicted in advance, and thus on a regular
basis (between once every two years and twice a year) an extra second is inserted into the UTC label. The decision about when to do this is made by the International Earth
Rotation Service (IERS) http://hpiers.obspm.fr/. http://hpiers.obspm.fr/ This one extra second is generally added right after what would be the final second of a month
(generally December or June). Thus, at these times, the normal pattern of ..., 23:59:58, 23:59:59, 00:00:00 ...is broken and replaced by ..., 23:59:58, 23:59:59, 23:59:60,
00:00:00, The next leap second will be inserted into UTC in this way at the end of December 1998. In principle, a leap second can be either positive or negative,
although there have not yet (as of September 1998) been any negative leap seconds.

Unfortunately, there is one additional small complication. Until Jan 1, 1972 UTC, the duration of one UTC second was not equal to the duration of one (physical,
TAI=GPS=CTime) second. This can be seen most easily from ftp://maia.usno.navy.mil/ser7/tai-utc.dat ftp://maia.usno.navy.mil/ser7/tai-utc.dat. Here is a small
extract from that file.

...
 1966 JAN 1 =JD 2439126.5 TAI-UTC= 4.3131700 S + (MJD - 39126.) X 0.002592 S
 1968 FEB 1 =JD 2439887.5 TAI-UTC= 4.2131700 S + (MJD - 39126.) X 0.002592 S
 1972 JAN 1 =JD 2441317.5 TAI-UTC= 10.0 S + (MJD - 41317.) X 0.0 S
 1972 JUL 1 =JD 2441499.5 TAI-UTC= 11.0 S + (MJD - 41317.) X 0.0 S
 1973 JAN 1 =JD 2441683.5 TAI-UTC= 12.0 S + (MJD - 41317.) X 0.0 S
...

Here, the Modified Julian Day (MJD) is defined as follows: MJD = JD - 2400000.5, where the Julian Day increments by one at noon every day. Notice that these
relationships imply that, before January 1, 1972 UTC, the difference between atomic time (TAI) and UTC time is not an integer number of seconds!

The values of JD and MJD at some interesting times are given below

1968 Feb 1 00:00:00 UTC JD=2439887.5 MJD=39887
1969 Feb 1 00:00:00 UTC JD=2440253.5 MJD=40253
1970 Jan 1 00:00:00 UTC JD=2440587.5 MJD=40587
1970 Feb 1 00:00:00 UTC JD=2440618.5 MJD=40618
1971 Jan 1 00:00:00 UTC JD=2440952.5 MJD=40952
1972 Jan 1 00:00:00 UTC JD=2441317.5 MJD=41317

In particular, on Jan 1 00:00:00 1970 UTC, the formula above gives:
(17.0.335)

We will ignore the 82 microseconds in what follows.

Much of the complication arises because the standard Unix C-library function gmtime(), which takes as its argument the number of seconds after Jan 1, 1970 UTC, and
should return the UTC time, does not return the correct UTC time. The function gmtime() fails to take account of leap seconds. The relationship between , Unix-C time,
and UTC time is demonstrated in the table below, which shows the effects of the leap seconds and the erroneous behavior of gmtime(). Note that in this table, the
definition of ``leap second" is not made precise until on or after Jan 1, 1972 UTC. Until that time, the number of leap seconds can be non-integer: here we have assumed
that it is integer. (This is of no consequence provided that we only study the relationship between our different time standards for times after Jan 1, 1972 UTC).

http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node312.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/manual.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node310.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node1.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node312.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/manual.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node310.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node1.html

11/10/14 20:51Time Standards: UTC, GPS, TAI, and Unix-C times.

Page 2 sur 4http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node311.html

Table: Relationship between different time coordinates. The UTC time should be thought of as a ``human
readable" label that gets attached to the time quantities. The number of leap seconds is often denoted by
TAI-UTC: it is equal to the amount by which the Unix notion of UTC differs from the actual time: TAI-

UTC=gmtime(time())-UTC+8 sec. The most severe problem with the Unix notion of time is that in
actually setting the time on an individual machine, one sets the time() function to return the wrong value.

Thus, at physical time if you correctly set the machine time to Jan 1
00:00:00 1972 UTC, and then immediately call the time() function, it will (incorrectly) return the value

63072000. (Note that this table incorrectly treats TAI-UTC as an integer before Jan 1, 1972 UTC.)

t physical GPS Unix-C UTC time label gmtime() Leap sec

(sec) time (sec) time() function of time() TAI-UTC

0 -315964811 0 Jan 1 00:00:00 1970 UTC Jan 1 00:00:00 1970 8

1 -315964810 1 Jan 1 00:00:01 1970 UTC Jan 1 00:00:01 1970 8

33350399 -282614412 33350399 Jan 21 23:59:59 1971 UTC Jan 21 23:59:59 1971 8

33350400 -282614411 33350400 Jan 21 23:59:60 1971 UTC Jan 22 00:00:00 1971 8

33350401 -282614410 33350401 Jan 22 00:00:00 1972 UTC Jan 22 00:00:01 1971 9

63071999 -252892812 63071999 Dec 31 23:59:58 1971 UTC Dec 31 23:59:59 1971 9

63072000 -252892811 63072000 Dec 31 23:59:59 1971 UTC Jan 1 00:00:00 1972 9

63072001 -252892810 63072001 Dec 31 23:59:60 1971 UTC Jan 1 00:00:01 1972 9

63072002 -252892809 63072002 Jan 1 00:00:00 1972 UTC Jan 1 00:00:02 1972 10

78796800 -237168011 78796800 Jun 30 23:59:58 1972 UTC Jul 1 00:00:00 1972 10

78796801 -237168010 78796801 Jun 30 23:59:59 1972 UTC Jul 1 00:00:01 1972 10

78796802 -237168009 78796802 Jun 30 23:59:60 1972 UTC Jul 1 00:00:02 1972 10

78796803 -237168008 78796803 Jul 1 00:00:00 1972 UTC Jul 1 00:00:03 1972 11

315964810 -1 315964810 Jan 5 23:59:59 1980 UTC Jan 6 00:00:10 1980 19

315964811 0 315964811 Jan 6 00:00:00 1980 UTC Jan 6 00:00:11 1980 19

315964812 1 315964812 Jan 6 00:00:01 1980 UTC Jan 6 00:00:12 1980 19

784880276 468915465 784880276 Nov 15 06:17:35 1994 UTC Nov 15 06:17:56 1994 29

784880277 468915466 784880277 Nov 15 06:17:36 1994 UTC Nov 15 06:17:57 1994 29

784880278 468915467 784880278 Nov 15 06:17:37 1994 UTC Nov 15 06:17:58 1994 29

911110676 595145865 911110676 Nov 15 06:17:33 1998 UTC Nov 15 06:17:56 1998 31

911110677 595145866 911110677 Nov 15 06:17:34 1998 UTC Nov 15 06:17:57 1998 31

911110678 595145867 911110678 Nov 15 06:17:35 1998 UTC Nov 15 06:17:58 1998 31

You can see that UTC time and the quantity returned by gmtime() move gradually out of synch with one another. Currently (October 1998) the two quantities have drifted
23 seconds out of sync.

The most easily used time standard today is GPS time, because GPS receivers are cheap, accurate, and available. GPS time is equal to plus a constant. GPS was set to be
zero on Jan 6 00:00:00 1980 UTC. Hence . This is because, up to the 82 microseconds

mentioned in equation (), one has

(17.0.336)

This number of seconds is obtained from:

http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node311.html#e:startleap

11/10/14 20:51Time Standards: UTC, GPS, TAI, and Unix-C times.

Page 3 sur 4http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node311.html

You can see that the relationship between GPS time and Unix-C time would be
(17.0.338)

if you started a perfect computer with a perfect internal clock running on Jan 1, 1970 UTC and left it running forever. On the other hand, if you started this computer off on
Jan 1, 1980 its internal Unix-C time would be set to 315964800 and the relationship would be instead

(17.0.339)

For a computer started at some other time, some other relationship will hold.

The final time coordinate in general use is TAI = GPS + 19 sec. This obeys the relationship

(17.0.340)

The GRASP library contains a pair of utility functions utctime() and gpstime() which are similar to gmtime(), except that they correctly generate the UTC label for
Unix-C time and GPS time (respectively).

Because the number of leap seconds is not know in advance (we can not predict how the earth's rotation rate will change in the future) it is often useful to store in time
records both a physical time label (for example GPS time) and in addition the number of leap seconds, in the form (TAI-UTC). Because the Unix-C library function
gmtime() is broken, we can use it to print the correct ``human-readable" UTC times almost all of the time, by using:

 (17.0.341)

where means ``pointer to". This will work properly, except that it will return identical values for two consecutive seconds, when one occurs directly before an
additional leap second is added, and the second occurs the first second of the new leap second. This is because the gmtime() function will never return a time of the form

XX:XX:60. The range of seconds returned by this function is .

Subsections

Function: utctime()
Function: gpstime()
Example: testutctime

next up previous contents
Next: Function: utctime() Up: GRASP: a data analysis Previous: Example: trackerF Contents
Bruce Allen 2000-11-19

http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node312.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node313.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node314.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node312.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/manual.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node310.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node1.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node312.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/manual.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node310.html
http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node1.html

11/10/14 20:51Time Standards: UTC, GPS, TAI, and Unix-C times.

Page 4 sur 4http://www.lsc-group.phys.uwm.edu/~ballen/grasp-distribution/GRASP/doc/html/node311.html

