
9th ctools coding sprint

Progressing with the code base
Implementing new features and tools

Have fun!

Welcome to Toulouse



Agenda
•  Today: Introduction & Definition of Projects

–  Learning ctools & GammaLib development in an hour
–  Discussion of projects
–  Team formation

•  Tuesday – Thursday: Coding
–  Dinner on Tuesday? 20h?

•  Friday: Project Status & Outlook

2	ctools	and	GammaLib	introduc2on	



Learning ctools and GammaLib 
development in an hour 



What you should know 
•  How to write C++ and/or Python code
•  How to use Git
•  Our GitLab development workflow !

(see http://cta.irap.omp.eu/ctools/develop/git/index.html)

•  Our v1.0.0 reference paper (mathematics) !
(see http://www.aanda.org/articles/aa/abs/2016/09/aa28822-16/aa28822-16.html)

•  Our coding conventions 

4	ctools	and	GammaLib	introduc2on	



What you will learn now
•  GammaLib and ctools introduction & overview
•  Adding a new ctool to ctools
•  Adding a new cscript to ctools

5	ctools	and	GammaLib	introduc2on	



Where do the ctools come from?

6	ctools	and	GammaLib	introduc2on	

Chandra
Fermi

INTEGRAL

SWIFT

Standards
FTOOLS (like) analysis has become a standard in high-energy 
astronomy. Thousands of astronomers are today familiar with 
this standard. FTOOLS allows to setup User transparent 
workflows, producing well defined intermediate products for 
checks and verifications.



Where do the ctools come from?

7	ctools	and	GammaLib	introduc2on	

Fermi

ctools are intentionally very 
similar to the Fermi/LAT Science Tools
•  Fermi/LAT Science Tools proven !

successful
•  Basically no learning curve for Fermi/LAT users
•  Low learning curve for users of other HE observatories
•  But admittedly some learning curve for people from the VHE community

… and we follow the current user preferences by intrinsically integrating the 
ctools into Python

Credits: Thomas Robitaille



Observing gamma-rays

8	ctools	and	GammaLib	introduc2on	

coded masks

photoelectric effect Compton scattering pair creation

pair convertors
lenses

Compton telescopes

Cherenkov telescopes

Particle detectors

space-based ground-based



What is GammaLib?

9	ctools	and	GammaLib	introduc2on	

All	gamma-ray	telescopes	measure	individual	photons	as	events.	Exis2ng	high-energy	
analysis	frameworks	share	a	number	of	common	features	(FITS	files,	likelihood	fiNng,	
modular	design)	=>	It	should	be	possible	to	handle	events	from	all	gamma-ray	telescopes	
with	a	single	so7ware	framework	=>	GammaLib	

is	a	IACT/CTA	frontend	to	

CTA/IACT	specific	 generic	



ctools paradigms

10	ctools	and	GammaLib	introduc2on	

•  The User is King
–  User driven code development
–  Put as less constraints as possible on the User, e.g. no reference 

platform
–  Make installation easy (not every User is a software geek)
–  Think multi-wavelength & Virtual Observatory
–  Provide ample documentation and tutorials

•  Avoid dependencies
–  Lessons learned from past projects all point out that dependencies 

create a maintenance problem
–  Dependencies complicate also the software installation !

(“dependency hell”)
–  Only implement what’s needed (slim code base)

•  Assure code quality
–  Enforce coding standards & code reviews
–  Multi-platform continuous integration & delivery
–  Code quality monitoring & quality gates



What you should do

11	ctools	and	GammaLib	introduc2on	

•  Make sure you read and follow the coding conventions
–  C++98 ISO (many servers still don’t support C++11)
–  Python 2.3 – 3.6 (may evolve since few systems nowadays with Python 2.5-, but some with 

Python 2.6, and Python 2.7 supported at least until 2020)
–  Indent with 4 spaces, no tabs
–  Do not exceed 80 characters in one line
–  …

•  Use coherent class and method names (always same method for same 
function, e.g. clear(), size(), is_empty(), append(), insert() …)

•  Only use Python standard library modules
•  Document your code (code documentation with Doxygen)
•  Document how to use your code (user documentation with Sphinx)
•  Write unit tests (you may do this even before writing your code)
•  If in doubt, ask for code review (can be nicely done using GitLab by 

everyone)



Using GammaLib as C++ library

12	ctools	and	GammaLib	introduc2on	

C++ program!
that uses GammaLib !
as C++ library. 

ctools are such C++ 
programs.



Using GammaLib as Python module

13	ctools	and	GammaLib	introduc2on	

Python script that uses 
GammaLib !
as Python module. 

cscripts are such Python 
scripts.



What is in GammaLib?

14	ctools	and	GammaLib	introduc2on	



What you need as developer
•  ANSI C++ compiler (e.g. g++, clang)
•  Git
•  make, automake, autoconf, libtools
•  cfitsio
•  readline & ncurses (nice to have for tab completion)
•  Python (including Python.h header file)
•  SWIG
•  Example installation on Mac OS X (after Xcode install):

15	ctools	and	GammaLib	introduc2on	



Using ctools/cscripts from command line

16	ctools	and	GammaLib	introduc2on	



Using ctools/cscripts as Python modules

17	ctools	and	GammaLib	introduc2on	



What is in ctools?

18	ctools	and	GammaLib	introduc2on	



Tutorial: adding a new ctool

19	ctools	and	GammaLib	introduc2on	

Let’s create a new tool to simulate pointings. Here are the steps:
1.  Make sure that a Redmine issue exists for the new tool (#1632)
2.  Find a good name for the tool (e.g. ctpntsim)
3.  Create a new feature branch (e.g. 1632-add-ctpntsim)
4.  Use code generator!

$ dev/codegen.py

5.  Reconfigure!
$ autoreconf  
$ ./configure  
$ make  
$ make check

6.  Implement your code
7.  Update ChangeLog and NEWS file
8.  Commit the code
9.  Push the code into your GitLab fork
10.  Ask for code review or code integration

You need GammaLib installed and 
working for that



ctools code generator

20	ctools	and	GammaLib	introduc2on	

Add a ctool

Answer a few questions



ctool base classes

21	ctools	and	GammaLib	introduc2on	

Tools dealing with 
observation containers

Tools doing max. 
likelihood fitting



What the code generator did

22	ctools	and	GammaLib	introduc2on	

Modified build system files !
(including unit test and 
reference documentation) 

Added subfolder with minimal !
C++ code, Python interface, unit 
test script, and reference 
documentation. These are the 
files you need now to adapt.



Example: Python interface

23	ctools	and	GammaLib	introduc2on	

In this example the class was derived 
from the ctobservation base class

Class implements required methods. 
The tool works (but does nothing so far)



Example: Par file

24	ctools	and	GammaLib	introduc2on	

Only standard 
parameters exist



Example: code implementation

25	ctools	and	GammaLib	introduc2on	

Main method 

Here the real stuff happens

Need to implement in this method the 
querying of all User parameters

If something needs to be 
saved, do it here



Update reference documentation

26	ctools	and	GammaLib	introduc2on	

Describe meaning of each parameter

Try to write text in block that fits in 80 
characters (also used for text shown 
when tool is executed with –help 
option).



Update index of reference documentation

27	ctools	and	GammaLib	introduc2on	

Describe what the tool is 
doing and move entry to 
alphabetically correct 
place



Tutorial: adding a new cscript

28	ctools	and	GammaLib	introduc2on	

Let’s create a new script to simulate pointings. Here are the steps:
1.  Make sure that a Redmine issue exists for the new tool (#1632)
2.  Find a good name for the tool (e.g. cspntsim)
3.  Create a new feature branch (e.g. 1632-add-cspntsim)
4.  Use code generator!

$ dev/codegen.py

5.  Reconfigure!
$ autoreconf  
$ ./configure  
$ make check

6.  Implement your code
7.  Update ChangeLog and NEWS file
8.  Commit the code
9.  Push the code into your GitLab fork
10.  Ask for code review or code integration



ctools code generator

29	ctools	and	GammaLib	introduc2on	

Add a cscript

cscripts also have three 
possible base classes



What the code generator did

30	ctools	and	GammaLib	introduc2on	

Modified build system files !
(including unit test and 
reference documentation) 

Added minimal !
Python code, par file, unit test 
script, and reference 
documentation. These are the 
files you need now to adapt.



cspntsim.py code adaption (1)

31	ctools	and	GammaLib	introduc2on	

Add private class members to pickling 
dictionary

Add any private class members here

Properly align header

Initialise private class members 
from pickling dictionary



cspntsim.py code adaption (2)

32	ctools	and	GammaLib	introduc2on	

Put the script code here. 
Factorize the code by using private methods.

Query all relevant User parameters

Save any results here (typically a FITS file)



33	ctools	and	GammaLib	introduc2on	



34	ctools	and	GammaLib	introduc2on	

Backup tutorial!
!

Adding a class to GammaLib!
Unit testing



Tutorial: adding a class to GammaLib

35	ctools	and	GammaLib	introduc2on	

Let’s create a new spectral model (say an EBL model). Here are the 
steps:
1.  Make sure that a Redmine issue exists for the new model
2.  Find a good name for the class (e.g. GModelSpectralEBL)
3.  Create a new feature branch (e.g. 2157-add-ebl-model)
4.  Start by copying an existing class

5.  Adapt code
6.  Add new files to build system
7.  Update ChangeLog and NEWS file
8.  Commit the code
9.  Push the code into your GitLab fork
10.  Ask for code review or code integration



.hpp code adaption (1)

36	ctools	and	GammaLib	introduc2on	

your name and current year

your name and purpose of file

Adapt to class name (multiple !
include protection)

mass replacement

Things for which you need the 
interface definition
Things that need to be known 
to exist



.hpp code adaption (2)

37	ctools	and	GammaLib	introduc2on	

Implement all pure virtual methods 
from the base class

add any other methods as needed

use explicit to avoid automatic type 
conversion

Standard methods for initialisation, 
copying and freeing members

Add members as needed (use mutable 
for pre-computed and cashed values)



.hpp code adaption (3)

38	ctools	and	GammaLib	introduc2on	

Every method has a single-line brief 
description

Document return value and units

add “one-liners” as inline methods

Document input parameters and 
units

Provide detailed description of method, 
including formulae, references, etc. 
(everything a user of this method may 
need) 



Doxygen code documentation

39	ctools	and	GammaLib	introduc2on	



.cpp code adaption (1)

40	ctools	and	GammaLib	introduc2on	

Make sure that package 
configuration is available 
(conditional compiling)

Things that are used within the 
file

In case a method throws an 
exception

Register the model (will handle 
detection in XML files)



.cpp code adaption (2)

41	ctools	and	GammaLib	introduc2on	

Invoke base class constructor

Copy all class members

Free all class members

Initialise all class members

Initialise all class members
Invoke base class constructor



.cpp code adaption (3)

42	ctools	and	GammaLib	introduc2on	

Assign base class members

Copy all class members

Free all class members

Don’t copy identity

Initialise all class members

Free all members, including all base classes 
(base classes last)

Initialise all members, including all base 
classes (base classes first)



.cpp code adaption (4)

43	ctools	and	GammaLib	introduc2on	

One block for each parameter

True if parameter has an analytical 
gradient, false otherwise

The type of your model in the XML file

Push all parameters into the 
parameter stack (allows iterating over 
parameters)



.cpp code adaption (5)

44	ctools	and	GammaLib	introduc2on	

Here the real magic happens

Formula in LaTeX

Compile option to catch NaNs / Infs

The only function you really needed to 
adapt to the model (and possibly 
optimise)

And here even more magic happens. 
Hopefully you can work out the analytical 
parameter gradients (with respect to the 
parameter value, i.e. parameter gradients 
times parameter scaling)



.i code adaption (1)

45	ctools	and	GammaLib	introduc2on	

.i files are interface files processed by SWIG to create the gammalib Python 
module. SWIG generates a xxx_wrap.cpp and a xxx.py file for each module xxx. The 
GModelSpactralEBL.i file is part of the “model” module.

Special SWIG directive



.i code adaption (2)

46	ctools	and	GammaLib	introduc2on	

Almost identical to the public class 
definition in the .hpp file

No = operator

No print() method

Extensions can make the class more 
“Pythonic” (also extension written in 
Python possible)



Add new files to build system

47	ctools	and	GammaLib	introduc2on	

Update the following files and type automake & ./configure
include/Gammalib.hpp include/Makefile.am pyext/gammalib/model.i src/model/Makefile.am



Testing in GammaLib and ctools

48	ctools	and	GammaLib	introduc2on	

GammaLib includes classes for implementing tests
•  GTestCase: implements one test
•  GTestSuite: implements a collection of tests (for example all tests 

of the methods of a given class)
•  GTestSuites: implements a container of test suites (for example all 

tests for a given module, all ctools tests, etc.)



Setting up a test suite in C++

49	ctools	and	GammaLib	introduc2on	

Allocate and append test suite to container 
(TestGSupport class derives from GTestSuite 
base class)

Run tests
Write test report into XML file (JUnit format)

Set all test methods

One test method (for example one per class)

Test assertions, values and exceptions



Setting up a test suite in Python

50	ctools	and	GammaLib	introduc2on	

Test method

Test case

Python test class derives from GPythonTestSuite

Set all test methods


