
ctools - Feature #1512

in ctbutterfly, methods to return energy/flux/errors in memory, without writing/reading butterfly.txt

07/15/2015 07:10 PM - Kelley-Hoskins Nathan

Status: Closed Start date: 07/15/2015

Priority: Normal Due date:

Assigned To: Knödlseder Jürgen % Done: 100%

Category: Estimated time: 0.00 hour

Target version: 1.5.0

Description

In ctbutterfly::save(), you can write the energies, fluxes, and errors of your spectral fit to a file. But, in a python pipeline with

ctools.ctbutterfly, there's no other way to access the energies/fluxes/errors without saving the results to a file, then reading them back

in and parsing them again.

So, I propose 4 new methods for ctbutterfly:

vector<float> ctbutterfly::energies() {

 return m_energies ;

}

vector<float> ctbutterfly::fluxes() {

 return m_fluxes ;

}

vector<float> ctbutterfly::errors() {

 return m_errors ;

}

??? ctbutterfly::covariance_matrix() {

 return m_covariance ; // ???

}

Each return a vector of floats for the (logarithmically center) energies, fluxes, and errors. Then, someone can do:

obs = GObservations()

load observations into obs

emin = gammalib.GEnergy(100, 'GeV')

emax = gammalib.GEnergy(100, 'TeV')

spec = ctools.ctbutterfly(obs)

spec['srcname'].string('Crab')

spec['emin'].real(emin.TeV())

spec['emax'].real(emax.TeV())

spec['enumbins'].integer(100)

spec.run()

yay!

en = spec.energies()

flux = spec.fluxes()

errs = spec.errors()

covar = spec.covariance_matrix()

carry on with storage and plotting

In addition, letting the covariance matrix also be readable in python would be nice too. I'm not certain a GMatrixSparse gets

converted to in python. Maybe a full matrix, like a list of lists?

04/29/2024 1/4

History

#1 - 07/16/2015 01:33 PM - Kelley-Hoskins Nathan

Actually, for the energies() function, it might be nicer to return a list of GEnergy() objects, rather than a list of floats.

#2 - 07/17/2015 10:59 AM - Mayer Michael

Sounds like a good idea. I think the main obstacle is, in the Python interface, to convert the std::vector<float> to a python list. I don't know if this can

be done easily. One could also think about moving away from std::vector to a GVector.

Regarding the covariance matrix: The GMatrixSparse object can be accessed via python, similar as every other gammalib class. The problem is that

we don't have load() and save() methods for the matrix.

#3 - 07/17/2015 11:04 AM - Knödlseder Jürgen

Mayer Michael wrote:

Sounds like a good idea. I think the main obstacle is, in the Python interface, to convert the std::vector<float> to a python list. I don't know if this

can be done easily.

This can be easily done by adding

%include "std_vector.i"

namespace std {

 %template(FloatVector) vector<float>;

}

to the .i file (see GNodeArray for an example).

#4 - 07/17/2015 11:05 AM - Knödlseder Jürgen

Kelley-Hoskins Nathan wrote:

Actually, for the energies() function, it might be nicer to return a list of GEnergy() objects, rather than a list of floats.

We actually have GEnergies which is a container of GEnergy objects. So I would just return that object.

#5 - 06/21/2016 09:50 PM - Knödlseder Jürgen

04/29/2024 2/4

- Target version set to 1.2.0

#6 - 03/03/2017 10:34 AM - Knödlseder Jürgen

- Target version changed from 1.2.0 to 1.3.0

#7 - 06/07/2017 05:45 PM - Knödlseder Jürgen

- Target version changed from 1.3.0 to 1.4.0

#8 - 08/01/2017 09:49 AM - Knödlseder Jürgen

- Target version changed from 1.4.0 to 1.5.0

#9 - 01/23/2018 10:52 AM - Knödlseder Jürgen

- Status changed from New to In Progress

- Assigned To set to Knödlseder Jürgen

- % Done changed from 0 to 10

The covariance matrix can be accessed using

>>> butterfly=ctools.ctbutterfly()

>>> print(butterfly.obs().function().covariance())

=== GMatrixSparse ===

 Number of rows: 0

 Number of columns: 0

 Number of nonzero elements : 0

 Number of allocated cells .: 0

 Memory block size: 512

 Sparse matrix fill: 0

 Pending element: 0

 Fill stack size: 0 (none)

Since the file that is written is a CSV file I think that the best option is to add a method that returns a GCsv object, making the interface simpler. This

means, however, that a user has to know the structure of the GCsv object.

#10 - 01/23/2018 11:32 AM - Knödlseder Jürgen

- Status changed from In Progress to Pull request

- % Done changed from 10 to 100

I added a ctbutterfly::butterfly() method that returns the computation results in form of a GCsv object.

#11 - 01/23/2018 12:24 PM - Knödlseder Jürgen

- Status changed from Pull request to Closed

04/29/2024 3/4

Merged into devel.

Powered by TCPDF (www.tcpdf.org)

04/29/2024 4/4

http://www.tcpdf.org

