GammalLib - Action #1731
Feature # 1729 (Closed): Add support to smooth sky maps

Use low-level FFT classes to implement GSkyMap smoothing
03/03/2016 10:46 PM - Knodlseder Jirgen

Status: Closed Start date: 03/03/2016
Priority: Normal Due date:

Assigned To: Knédlseder Jurgen % Done: 100%
Category: Estimated time: 0.00 hour
Target version: 1.5.0

Description

The low-level FFT classes should be used to implement GSkyMap smoothing

Related issues:
Related to Gammalib - Feature # 1768: Investigate whether we can interface Ga... In Progress 04/18/2016

History

#1 - 06/21/2016 10:01 PM - Knddliseder Jiirgen

- Target version set to 1.2.0

#2 - 10/07/2016 10:17 PM - Knodlseder Jiirgen

One possibility is to implement a GFft2d class for performing a 2-dimensional fast fourier transform. The class would store the fourier transform
coefficients, allow operations, and provide methods for forward and backward transformations. A possible use case could look like this (this makes
use of a ndarray, see #1768):

GNdarray a(10,5);
GNdarray b(10,5);

GFft2d fa(a);

GFftad fb;

fb.forward(b);

GFft2d fc = fa * fb;
GNdarray c = fc.backward();

#3 - 10/07/2016 10:17 PM - Knddliseder Jiirgen

- Related to Feature #1768: Investigate whether we can interface GammalLib with NumPy added

#4 - 10/16/2016 11:43 PM - Knodlseder Jiirgen
- Status changed from New to In Progress
- Assigned To set to Knddlseder Jiirgen

- % Done changed from 0 to 70

05/14/2024 1/5

| implemented the FFT from the GNU Scientific Library. Two classes have been added:

e GFft which performs a FFT on a n-dimensional array of type GNdarray
e GFftWavetable which is a helper class for GFft that contains the trigonometric coefficients for a factorisation

The class so far operates only on 1-dimensional arrays since the GSL does not provide support for more-dimensional arrays. Implementation of such
support should however not be too complicated.

#5 - 10/17/2016 12:45 AM - Knédlseder Jiirgen

Here a Fortran code of a 2D FFT:

C
C Transform X lines of C array
c
¢ On 10 May 2010, the index IW was modified.
c
IW=2*L+INT(LOG(REAL(L)))+5

CALL CFFTMF(L, 1, M, LDIM, C, (L-1) + LDIM*(M-1) +1,
1 WSAVE(IW), 2*M + INT(LOG(REAL(M))) + 4,
2 WORK, 2*L*M, IER1)
IF (IER1 .NE. 0) THEN
IER = 20
CALL XERFFT ('CFFT2F',-5)
GO TO 100
ENDIF
C
C Transform Y lines of C array
C
IW =1
CALL CFFTMF (M, LDIM, L, 1, C, (M-1)*LDIM + L,
1 WSAVE(IW), 2*L + INT(LOG(REAL(L))) + 4,
2 WORK, 2*M*L, IER1)
IF (IER1 .NE. 0) THEN
IER = 20
CALL XERFFT ('CFFT2F',-5)
ENDIF

with

e | is the number of elements in the first dimension
¢ M is the number of elements in the second dimension
e LDIM is the number of elements in the first dimension and corresponds to the stride

The CFFTMF is shown below and calls the 1D function CMFM1F:

SUBROUTINE CFFTMF (LOT, JUMP, N, INC, C, LENC, WSAVE, LENSAYV,
1 WORK, LENWRK, IER)

C
INTEGER LOT, JUMP, N, INC, LENC, LENSAV, LENWRK, IER
COMPLEX C(LENC)
REAL WSAVE(LENSAV) ,WORK(LENWRK)
LOGICAL XERCON

IW1 = N+N+1

CALL CMFM1F (LOT,JUMP,N,INC,C,WORK,WSAVE,WSAVE(IW1),
1 WSAVE(IW1+1))

RETURN

END

with

e LOT is the number of sequences to be transformed
¢ JUMP is the integer increment of the first elements of two consecutive sequences

05/14/2024 2/5

e N is the integer length of each sequence to be transformed
¢ INC is the integer increment of two consecutive elements within the same sequence

N-1

C(L*JUMP+J*INC+1) = SUM C(L*JUMP+K*INC+1)*EXP(-I*J*K*2*PI/N)
K=0

where I=SQRT(-1).

J=0,...,N-1

L=0,...,LOT-1

#6 - 10/17/2016 03:56 PM - Knddliseder Jiirgen
- % Done changed from 70 to 90

The GFft class now also supports 2-dimensional arrays.
Code has been merged into devel.

What remains is the implementation of the operators, and the usage of the GFft class for map smoothing in GSkyMap.

#7 - 10/17/2016 04:57 PM - Knodlseder Jiirgen
- File input.png added

- File kernel.png added

- File smoothed.png added

Here a test sequence to illustrate that smoothing of a 2-dimensional image works (this also illustrates how the smoothing kernel needs to be aligned):

Input image Kernel Smoothed imaged

Allocate and set 2-d arra
array = gammalib.GNdarray(10, 10)
foriin range(3,7):

arrayl[i,i] = 1.0,
ref = array.sum()

Allocate and set 2-d kernel. The kernel needs to be normalized
to unity and the centre of the kernel needs to be at pixel [0,0],
and it needs to be wraped around to negative indices

kernel = gammalib.GNdarray(10, [10) NN
kernel[0,0] = 0.4

#0.4

kernel[0,1] = 0.1

kernel[1,0] = 0.1

kernel[0,9] = 0.1

kernel[9,0] = 0.1

#0.2

kernel[1,1] = 0.05
kernel[9,1] = 0.05
kernel[9,9] = 0.05

05/14/2024 3/5

kernel[1,9] = 0.05

Smooth 2-d array using FFT
fft_array = gammalib.GFft(array)
fft_kernel = gammalib.GFft(kernel)
fft_smooth = fft_array * fft_kernel

Backtransform
smooth = fft_smooth.backward()

Test sum
sum = smooth.sum()
self.test_value(sum, ref)

Store in sky map
map = gammalib.GSkyMap('CAR','CEL",0.0,0.0,-1.0,1.0,10,10)
for iy in range(10):
for ix in range(10):
map[ix+iy*10] = smooth([ix,iy]
map.save('test_fft.fits', True)

#8 - 03/03/2017 10:23 AM - KnddlIseder Jiirgen

- Target version changed from 1.2.0 to 1.3.0

#9 - 06/06/2017 10:25 PM - Knddliseder Jiirgen

- Target version changed from 1.3.0 to 1.4.0

#10 - 07/31/2017 11:10 PM - Knddlseder Jiirgen

- Target version changed from 1.4.0 to 1.5.0
#11 - 10/17/2017 05:14 PM - Knédliseder Jiirgen

- Status changed from In Progress to Closed

- % Done changed from 90 to 100

The GSkyMap::smooth() method was added to accomplish the job.

So far the method supports smoothing using a uniform disk kernel and smoothing using a Gaussian kernel.

Files

05/14/2024 4/5

input.png 19.4 KB 10/17/2016 Knédlseder Jirgen
kernel.png 19.4 KB 10/17/2016 Knédlseder Jirgen
smoothed.png 19.8 KB 10/17/2016 Knodlseder Jirgen

05/14/2024 5/5

http://www.tcpdf.org

