GammaLib - Bug #2179

ctools science verification fails

08/22/2017 04:35 PM - Knödlseder Jürgen

Status: Closed Start date: 08/22/2017 **Priority:** Due date: Urgent Assigned To: % Done: 100% Knödlseder Jürgen Category: **Estimated time:** 0.00 hour Target version: 1.4.1

Description

The science verification produces since April the following errors:

ctools science verification. Test nodes model: Mean -19088.02665 of Pull_Crab_Intensity0 should be within [-0.40,0.40] range ctools science verification. Test nodes model: Standard deviation 17571.98646 of Pull_Crab_Intensity0 should be within [0.80.1.20] range

ctools science verification. Test nodes model: Mean -4.83094 of Pull_Crab_Intensity1 should be within [-0.40,0.40] range ctools science verification. Test nodes model: Standard deviation 1.98642 of Pull_Crab_Intensity1 should be within [0.80,1.20] range

ctools science verification. Test nodes model: Mean -37.78501 of Pull_Crab_Intensity2 should be within [-0.40,0.40] range ctools science verification. Test nodes model: Standard deviation 10.75212 of Pull_Crab_Intensity2 should be within [0.80,1.20] range

ctools science verification. Test nodes model: Mean -660.27252 of Pull_Crab_Intensity3 should be within [-0.40,0.40] range ctools science verification. Test nodes model: Standard deviation 4405.75126 of Pull_Crab_Intensity3 should be within [0.80,1.20] range

ctools science verification. Test diffuse cube model: Mean -8.34991 of Pull_Crab_Prefactor should be within [-0.40,0.40] range ctools science verification. Test diffuse cube model: Mean 13.47494 of Pull_Crab_Index should be within [-0.40,0.40] range

The following changes were done in GammaLib and ctools:

ctools

- 1 Add smoothly broken power law to science verification (#1948) (detail)
- 2 Optionally add LO_THRES and HI_THRES keywords to IRF (detail)
- 3 Enhance show_irf.py script (detail)
- 4 Introduce site-dependent energy range in make pointings.py (detail)
- 5 Support of map cubes lying outside Rol in ctobssim (detail)
- 6 Do not fit smoothness parameter in smoothly broken power law for (detail)
- 7 Add user documentation for smoothly broken power law (detail)
- 8 Add unit test for show irf.py example script (detail)
- 9 Correct debug message (detail)
- 10 Change show irf.py so that it is also compliant with older matplotlib (detail)

GammaLib

- 1 Fixed issues with the GModelSpectralSmoothBrokenPlaw MC generation (detail)
- 2 Removed old code from GModelSpectralSmoothBrokenPlaw (#1948) (detail)
- 3 Enhance precision of GCTAEdisp2D::compute ebounds src (detail)
- 4 Set table boundaries in GCTAEdisp2D before normalizing the table (detail)
- 5 Revert to parallel tests (detail)
- 6 Correct model normalisation in test_model_spectral.py (detail)
- 7 Integrate smoothly broken power law spectrum (detail)
- 8 Correct comments (detail)
- 9 Add user documentation for smoothly broken power law (detail)
- 10 Make GModelSky::mc() method save against invalid energy ranges or model (detail)
- 11 Invert loop in GModelSpatialDiffuseCube::set_mc_cone to speed up (detail)
- 12 Assure that GCTAEdisp2D::mc() method does not block for empty energy (detail)
- 13 Add energy margin in response cube computation (detail)

04/28/2024 1/2

History

#1 - 08/22/2017 04:36 PM - Knödlseder Jürgen

- Target version changed from 1.5.0 to 1.4.1

#2 - 08/22/2017 11:14 PM - Knödlseder Jürgen

- Project changed from ctools to GammaLib
- Status changed from New to In Progress
- Target version changed from 1.4.1 to 1.4.1
- % Done changed from 0 to 90

It turned out that a bug introduced in GModelSpectralNodes::mc() produced that problem. In fact, the case that there is a single node in the MC cache led to an exception instead of using this single node, which is needed for extrapolation. Changing the code as follows solved the problem:

```
if (m_mc_cum.size() > 1) {
    double u = ran.uniform();
    for (inx = m_mc_cum.size()-1; inx > 0; --inx) {
        if (m_mc_cum[inx-1] <= u) {
            break;
        }
    }
} else if (m_mc_cum.size() == 0) {
    std::string msg = "No valid nodes found for energy interval ["+emin.print()+","+emax.print()+"]. Either restrict "
            "the energy range to the one covered by the "
            "spectral nodes or extend the spectral nodes "
            "in energy.";
    throw GException::invalid_return_value(G_MC, msg);
}</pre>
```

#3 - 08/23/2017 12:33 AM - Knödlseder Jürgen

- Status changed from In Progress to Closed
- % Done changed from 90 to 100

Fixed and merged into devel. A bugfix release 1.4.1 of GammaLib is in preparation.

04/28/2024 2/2