GammaLib - Feature #2454

Implement EBL spectral model

04/19/2018 05:00 PM - Knödlseder Jürgen

Status:	Closed	Start date:	04/19/2018		
Priority:	Normal	Due date:			
Assigned To:	Tibaldo Luigi	% Done:	100%		
Category:		Estimated time:	0.00 hour		
Target version:	1.6.0				
Description		L.			
Implement a spectral model that emulates the EBL absorption.					

History

#1 - 06/25/2018 05:58 PM - Tibaldo Luigi

- Status changed from New to In Progress

- Assigned To set to Tibaldo Luigi

The easiest solution seems to be he implementation of the exponential of an arbitrary spectral model. If we call F the the intrinsic spectrum of the source (for which we assume we can use one of the existing models, e.g. power law), tau the tabulated optical depth as a function of energy for a given EBL model and source redishift, MUL the multiplicative model function (already available), EXP the exponential to be implemented, we could model the EBL attenuated spectrum as

MUL))

with Normalization as free parameter.

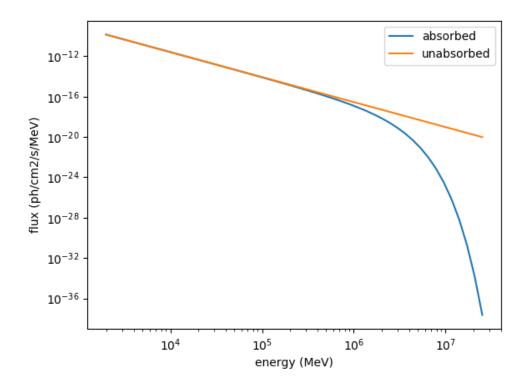
I will investigate with AGN experts if this is sufficient for their aims.

#2 - 06/28/2018 10:45 AM - Tibaldo Luigi

- % Done changed from 0 to 40

Implemented class GModelSpectralExponential in gammalib (including swig interface). Now working on testing and debugging.

#3 - 06/29/2018 02:59 PM - Tibaldo Luigi


- % Done changed from 40 to 70

Debugged and test routines created. Simple tests produce the expected results. Will now proceed to high level tests in ctools.

#4 - 06/29/2018 04:58 PM - Tibaldo Luigi

- File spectrum.png added
- File sed.png added
- % Done changed from 70 to 90

I simulated with ctools 1h of observations of a Crab-like source with/without absorption. This graph shows the absorbed/unabsorbed spectrum.

I analyzed both data samples with the absorbed model defined as PowerLaw X Exp (- alpha x tau), where tau was the same tabulated opacity model used in the simulation. The results were in both cases compatible with the Monte Carlo truth, in particular the value of the alpha parameter resulted:

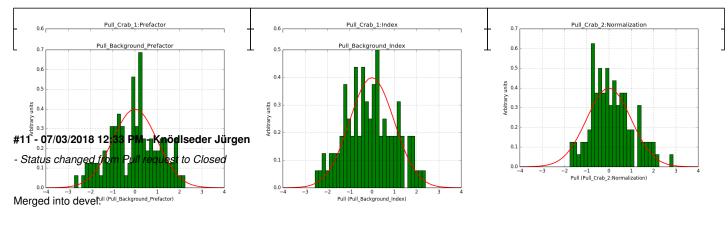
- 0.96 pm 0.09 for the simulation with absorption
- 0.002 pm 0.003 for the simulation without absorption

The following graph shows the SED derived from the absorbed dataset

Everything seems to work as expected.

	•				
#5 - 06/29/ 20 18 05 28	PM - T ibaldo Luigi				
- Status changed from	In Progress to Pull request				
- % Done changed from	n 90 to 100				
s -	· · ·				
All done from my side.	Note that the pull request a	pplies for the branches 24	54 in both gammalib and c	tools	. The latter contain just an addition to the
User Manual that illustr	ates how to use the new fu	nction to model EBL absor	ption.		
#6 - 07/02/2013 h2:01	PM - Knödlseder Jürgen	+			
등 -	_				
I looked into the model	and it seems to me that it a	actually has no alpha parar	neter. Is this true?		
ш -		_			
#7 - 07/02/2018 03 ⁻ 07	PM - Tibaldo Luigi	T			
It has no explicit extra r was no need to add a s		al model that you could us	e as exponent has its own	norn	nalization parameter, so I thought there
				dan	gerous because in the end you would
,	lizations, and it would be a	5	-		
10	-1 10) ⁰ 10	$)^1$ 10	0 ²	
		Energy (TeV)			

#8 - 07/02/2018 03:09 PM - Knödlseder Jürgen


You are absolutely correct, no extra parameter is in fact needed. Just wanted to double check that this was your intention.

#9 - 07/03/2018 09:34 AM - Knödlseder Jürgen

Merged GammaLib code into devel. Now will work on the ctools part.

#10 - 07/03/2018 10:52 AM - Knödlseder Jürgen

- File crab_prefactor.png added
- File crab_index.png added
- File crab_normalization.png added
- File bgd_prefactor.png added
- File bgd_index.png added

I added a test to the science_verification.py script, things look good, below the respective pull distributions.

Files

spectrum.png

13.5 KB	06/29/2018	Tibaldo Luigi
40.6 KB	07/03/2018	Knödlseder Jürgen
39.8 KB	07/03/2018	Knödlseder Jürgen
41.5 KB	07/03/2018	Knödlseder Jürgen
42.2 KB	07/03/2018	Knödlseder Jürgen
41.4 KB	07/03/2018	Knödlseder Jürgen
	40.6 KB 39.8 KB 41.5 KB 42.2 KB	40.6 KB 07/03/2018 39.8 KB 07/03/2018 41.5 KB 07/03/2018 42.2 KB 07/03/2018