
GammaLib - Action #3405

Implement vectorised response computation for energy dispersion

10/18/2020 10:57 AM - Knödlseder Jürgen

Status: In Progress Start date: 10/18/2020

Priority: Normal Due date:

Assigned To: Knödlseder Jürgen % Done: 20%

Category: Estimated time: 0.00 hour

Target version:

Description

For the moment the vectorised response computation brings only a speed-up without energy dispersion. The code needs to be

restructured to achieve also a speed-up with energy dispersion enabled.

Related issues:

Related to GammaLib - Action # 3390: Implement vectorised computation of ener... Rejected 10/14/2020

History

#1 - 10/18/2020 02:06 PM - Knödlseder Jürgen

One possibility to do this at high level would be to add methods that GEventCube that return the number of energy bins and that allow iterating over

all event bins for a given energy bin. This will allow for instruments where data are binned in energy to process energy bin after energy bin, using

high-level energy dispersion information.

What would be needed is something like this:

GEventBin* GEventCube::first_event_bin(const int& iebin);

GEventBin* GEventCube::next_event_bin(const int& iebin);

Note that a

GEbounds GEvents::ebounds(void) const;

method exists already at the level of the GEvents class, which allows accessing how many energy bins exist.

The methods can then be used as follows to loop over all events in an energy bin:

for (GEventBin* bin = first_event_bin(iebin); bin != NULL; bin = next_event_bin(iebin)) {

 ...

}

04/25/2024 1/3

#2 - 10/19/2020 09:06 AM - Knödlseder Jürgen

I'm not sure that such methods are actually useful, since what counts is the minimisation of the spatial transformations.

#3 - 10/21/2020 09:22 PM - Knödlseder Jürgen

Here is the current performance of the code using energy dispersion. The values were taken from issue #3203.

Code CPU Iterations logL

Reference 11385.7 s 2 122531.429

Using vector response, still

event-by-event evaluation

10871.2 s 2 122531.429

#4 - 10/22/2020 12:01 PM - Knödlseder Jürgen

- Status changed from New to In Progress

- Assigned To set to Knödlseder Jürgen

- % Done changed from 0 to 10

Before starting the vectorisation I wrote down the current code status in the TN0003 and restructured a bit the GResponse class so that four virtual

methods are now dealing with event-wise and vectorised event probability computation for the two cases of neglecting or using the energy dispersion.

This allows overloading of the various computations by instrument-specific implementations.

virtual double eval_prob_no_edisp(const GModelSky& model,

 const GEvent& event,

 const GEnergy& srcEng,

 const GTime& srcTime,

 const GObservation& obs,

 const bool& grad) const;

virtual double eval_prob_edisp(const GModelSky& model,

 const GEvent& event,

 const GTime& srcTime,

 const GObservation& obs,

 const bool& grad) const;

virtual GVector eval_probs_no_edisp(const GModelSky& model,

 const GObservation& obs,

 GMatrixSparse* gradients) const;

virtual GVector eval_probs_edisp(const GModelSky& model,

 const GObservation& obs,

 GMatrixSparse* gradients) const;

04/25/2024 2/3

#5 - 10/22/2020 12:21 PM - Knödlseder Jürgen

- % Done changed from 10 to 20

As a first modification, the vector computation of analytical spatial model gradients was added. So far there is no support for the event wise spatial

model gradients in the CTA interface, but at least the code structure makes such a support possible, and support can be implemented at CTA level.

Before doing so, we should make sure that the code works still as expected for all spatial models. Note that the make check is successful.

#6 - 10/22/2020 04:09 PM - Knödlseder Jürgen

Here the test results, where _b refers for former results obtained with the old code and _a refers to new results obtained with the new code.

Model CPU_b Iter_b logL_b CPU_a Iter_a logL_a Comments

Disk 14.81 2 156240.662 14.80 2 156240.662 identical result

Gaussian 16.55 2 118106.615 16.25 2 118106.615 identical result

Ring 257.40 31 125762.471 263.59 31 125762.471 identical result

Shell 48.47 4 127541.952 49.38 4 127541.952 identical result

Profile 97.40 2 118004.032 105.36 2 118004.032 identical result

Gaussian

(edisp)

10871.2 2 122531.429 10848 2 122531.429 identical result

Gaussian

(unbinned)

3313.09 2 -11118399.291 3261.26 2 -11118399.291 identical result

Gaussian

(binned)

1974.85 2 118107.706 1938.22 2 118107.706 identical result

#7 - 11/18/2020 11:03 PM - Knödlseder Jürgen

- Related to Action #3390: Implement vectorised computation of energy dispersion added

#8 - 03/14/2022 12:28 PM - Knödlseder Jürgen

- Target version deleted (2.0.0)

Powered by TCPDF (www.tcpdf.org)

04/25/2024 3/3

http://www.tcpdf.org

