
GammaLib - Action #773

Feature # 692 (Closed): Perform an extensive interface review of all classes

Review model module classes

02/20/2013 03:14 AM - Knödlseder Jürgen

Status: Closed Start date: 02/20/2013

Priority: Normal Due date:

Assigned To: Knödlseder Jürgen % Done: 100%

Category: Estimated time: 20.00 hours

Target version: 00-08-00

Description

Related issues:

Related to GammaLib - Action # 693: Review interface for GModelSpectral classes Closed 01/12/2013

History

#1 - 02/20/2013 03:15 AM - Knödlseder Jürgen

The following classes have been reviewed:

Class Comment

GModels Derive from GContainer, implement container

methods.

GModelPar Revise interface completely, add autoscale()

method, assure non-zero scale factor.

GModel Return name by const reference

GModelSky value and gradients take GPhoton as argument,

inline declarations, improved documentation

GModelSpatial Add autoscale() method, pass GPhoton to eval

and eval_gradients methods, and GEnergy and

GTime to mc method, inline declarations

GModelSpatialDiffuse Pass GPhoton to eval and eval_gradients

methods, and GEnergy and GTime to mc method

GModelSpatialDiffuseConst Pass GPhoton to eval and eval_gradients

methods, and GEnergy and GTime to mc method,

inline declarations

GModelSpatialDiffuseCube Pass GPhoton to eval and eval_gradients

methods, and GEnergy and GTime to mc method,

inline declarations

GModelSpatialDiffuseMap Pass GPhoton to eval and eval_gradients

methods, and GEnergy and GTime to mc method,

inline declarations

GModelSpatialElliptical Pass GEnergy and GTime to eval, eval_gradients

and mc methods, inline declarations

GModelSpatialEllipticalDisk Pass GEnergy and GTime to eval, eval_gradients

and mc methods, inline declarations

GModelSpatialPointSource Pass GPhoton to eval and eval_gradients

methods, and GEnergy and GTime to mc method

GModelSpatialRadial Pass GEnergy and GTime to eval, eval_gradients

and mc methods, inline declarations

GModelSpatialRadialDisk Pass GEnergy and GTime to eval, eval_gradients

and mc methods, inline declarations

GModelSpatialRadialGauss Pass GEnergy and GTime to eval, eval_gradients

and mc methods, inline declarations

GModelSpatialRadialShell Pass GEnergy and GTime to eval, eval_gradients

and mc methods, inline declarations

GModelSpectral Add autoscale() method, add time argument to

eval, eval_gradients and mc methods, remove

const from eval_gradients

GModelSpectralConst Add time argument to eval, eval_gradients and mc

methods, remove const from eval_gradients, add

value constructor and access methods, rename

norm to value

GModelSpectralExpPlaw Remove autoscale() method, auto-scale in

parameter constructor, complete value

constructor, add time argument to eval,

eval_gradients and mc methods, remove const

from eval_gradients, implement parameter access

methods (inline), add pre computation cache for

eval and eval_gradients methods, rename norm to

prefactor and ecut to cutoff

05/04/2024 1/5

GModelSpectralFunc Complete value constructor, add time argument to

eval, eval_gradients and mc methods, remove

const from eval_gradients, implement parameter

access methods (inline)

GModelSpectralPlaw Remove autoscale() method, auto-scale in

parameter constructor, complete value

constructor, add time argument to eval,

eval_gradients and mc methods, remove const

from eval_gradients, implement parameter access

methods (inline), rename norm to prefactor

GModelSpectralPlaw2 Complete value constructor, add time argument to

eval, eval_gradients and mc methods, remove

const from eval_gradients, implement parameter

access methods (inline), emin() and emax()

methods now return / take GEnergy

GModelSpectralNodes Add time argument to eval, eval_gradients and mc

methods, remove const from eval_gradients,

implement parameter access methods and node

manipulation methods

GModelSpectralLogParabola Remove autoscale() method, auto-scale in

parameter constructor, complete value

constructor, add time argument to eval,

eval_gradients and mc methods, remove const

from eval_gradients, implement parameter access

methods (inline), pivot() methods now return / take

GEnergy, rename norm to prefactor

GModelTemporal Remove const from eval_gradients

GModelTemporalConst Add value contructor, remove const from

eval_gradients, implement parameter access

methods (inline)

GModelData Nothing

GModelRegistry size method inline

GModelSpatialRegistry size method inline

GModelSpectralRegistry size method inline

GModelTemporalRegistry size method inline

05/04/2024 2/5

#2 - 02/20/2013 03:26 AM - Knödlseder Jürgen

- Status changed from New to In Progress

- Assigned To set to Knödlseder Jürgen

- % Done changed from 0 to 10

#3 - 02/20/2013 03:26 AM - Knödlseder Jürgen

- Remaining (hours) changed from 20.0 to 16.0

#4 - 02/21/2013 01:18 AM - Knödlseder Jürgen

- Remaining (hours) changed from 16.0 to 15.0

The GModels class access operator now returns models by reference instead of returning pointers.

#5 - 02/21/2013 07:00 AM - Knödlseder Jürgen

Jürgen Knödlseder wrote:

The GModels class access operator now returns models by reference instead of returning pointers.

I just recognized that this was stupid. I reintroduced the code slicing problem. Instead, all container classes holding pointers of base classes should

have pointer access operators! See #517.

#6 - 02/22/2013 12:24 AM - Knödlseder Jürgen

The GModels method should have a hasmodel() method that checks whether a model with a specific name is present in the container. The method

should be inspired from the GPars::haspar() method.

In general, container classes that allow access by name should have a hasXXX method to check whether a specific named object is present.

#7 - 03/17/2013 10:19 PM - Knödlseder Jürgen

A generic autoscale() method should be added to a model components. The purpose of the autoscale() method is to set the scale factors to the real

value and the value to 1, so that all model parameters are scaled using their actual values.

The best is to add an autoscale() method at the GModelPar level, so that each parameter can be autoscaled.

#8 - 03/17/2013 10:35 PM - Knödlseder Jürgen

- % Done changed from 10 to 20

Jürgen Knödlseder wrote:

A generic autoscale() method should be added to a model components. The purpose of the autoscale() method is to set the scale factors to the

real value and the value to 1, so that all model parameters are scaled using their actual values.

The best is to add an autoscale() method at the GModelPar level, so that each parameter can be autoscaled.

05/04/2024 3/5

An autoscale() method has been added to GModelPar and to the GModelSpatial, GModelSpectral and GModelTemporal classes. This method should

be called systematically in the parameter constructors.

#9 - 03/19/2013 12:42 PM - Knödlseder Jürgen

- % Done changed from 20 to 50

- Remaining (hours) changed from 15.0 to 10.0

The GModelPar interface has been fully revised. This impacted many of the model classes.

The modification has been tested, and ctools compliance checked. Now the road is paved towards a review of all other interfaces.

#10 - 03/23/2013 09:53 PM - Knödlseder Jürgen

I just recognized a major problem with the GModelSpatialDiffuseCube class: this class does not only represent a spatial model, but a spatio-spectral

model. As GModelSpatialDiffuseCube has the interface of a spatial model only, it does not allow energy dependent model evaluation. In fact,

GModelSpatialDiffuseCube is not a component of a fully factorized model, it is the first example of a non-factorized model.

How to deal with that? Change the class inheritance scheme where GModelSky is only the base class and then we have derived classes for

factorized or other model types? Or making GModelSky deal with all model types?

Or should we treat GModelSpatialDiffuseCube as a special case, because it is a spatio-spectral model but coexists with a spectral model in the

Fermi-LAT XML interface?

The problem occurs in the response computation, which explicitly uses the spatial model's eval method with the sky direction as single parameter for

model computation. The source energy is available at this point, so it could be used for computation.

It is interesting to recognized that the GModelSky::spatial method does not really relies on the fact that the model is factorized, except for the fact that

the gradients need the correct pre-factors. This means that the irf method could in fact return the full response, and not only that of the spatial

component.

The entire interfaces were in fact thought for a factorized sky model, and now we have a clear example for a non-factorized sky model.

A created action #808 to rethink the interface for non-factorized sky models.

#11 - 03/26/2013 12:40 AM - Knödlseder Jürgen

- % Done changed from 50 to 70

Finished the spatial classes.

#12 - 04/02/2013 10:01 PM - Knödlseder Jürgen

Jürgen Knödlseder wrote:

The GModels method should have a hasmodel() method that checks whether a model with a specific name is present in the container. The

method should be inspired from the GPars::haspar() method.

05/04/2024 4/5

In general, container classes that allow access by name should have a hasXXX method to check whether a specific named object is present.

Done!

#13 - 04/02/2013 10:02 PM - Knödlseder Jürgen

- Status changed from In Progress to Feedback

- % Done changed from 70 to 100

- Remaining (hours) changed from 10.0 to 0.0

The model class review is now finished.

#14 - 12/03/2013 09:59 AM - Knödlseder Jürgen

- Status changed from Feedback to Closed

Powered by TCPDF (www.tcpdf.org)

05/04/2024 5/5

http://www.tcpdf.org

