
GammaLib - GammaLib_directory_structure - # 4

{{lastupdated_at}} by {{lastupdated_by}}

GammaLib directory structure

This page explains the directory structure of GammaLib. Note that this description applies to the directory that is obtained by cloning

the Git repository. For a source code release, Python wrapper files will be present, and also some documentation will be shipped in

pdf format. The directory structure of a source code release will thus differ in details.

The directory structure is shown here as it would appear using the ls -la command on a Linux machine. Note that file sizes may differ

for your actual copy of the source code as the software evolves.

GammaLib directory

The gammalib directory after cloning from the GammaLib Git repository will have the following content:

drwxr-xr-x 13 jurgen staff 442 12 oct 21:35 .git <= Git information

-rw-r--r-- 1 jurgen staff 218 12 oct 21:35 AUTHORS

-rw-r--r-- 1 jurgen staff 35146 12 oct 21:35 COPYING

-rw-r--r-- 1 jurgen staff 6358 12 oct 21:35 ChangeLog

-rw-r--r-- 1 jurgen staff 11397 12 oct 21:35 INSTALL

-rw-r--r-- 1 jurgen staff 6139 12 oct 21:35 Makefile.am <- automake input file

-rw-r--r-- 1 jurgen staff 2770 12 oct 21:35 NEWS

-rw-r--r-- 1 jurgen staff 11606 12 oct 21:35 README

-rwxr-xr-x 1 jurgen staff 228 12 oct 21:35 autogen.sh <- autotools generation script

-rw-r--r-- 1 jurgen staff 52654 12 oct 21:35 configure.ac <- autoconf input file

drwxr-xr-x 9 jurgen staff 306 12 oct 21:35 dev <= code development utilities

drwxr-xr-x 8 jurgen staff 272 12 oct 21:35 doc <= GammaLib documentation

drwxr-xr-x 3 jurgen staff 102 12 oct 21:35 examples <= GammaLib usage examples

-rw-r--r-- 1 jurgen staff 397 12 oct 21:35 gammalib.pc.in <- pkgconfig input file

drwxr-xr-x 129 jurgen staff 4386 12 oct 21:35 include <= include files for instrument independent code

drwxr-xr-x 6 jurgen staff 204 12 oct 21:35 inst <= instrument dependent code

drwxr-xr-x 12 jurgen staff 408 12 oct 21:35 m4 <= autoconf macros

drwxr-xr-x 128 jurgen staff 4352 12 oct 21:35 pyext <= Python binding definition files (for swig)

drwxr-xr-x 18 jurgen staff 612 12 oct 21:35 src <= instrument independent code

drwxr-xr-x 52 jurgen staff 1768 12 oct 21:35 test <= code for unit testing

-rwxr-xr-x 1 jurgen staff 1418 12 oct 21:35 testall.sh <- extended test script

GammaLib uses autotools for configuration (see below). There are two central input files that will be used by autotools: Makefile.am

will be used to generate Makefile, which is the script invoked by the make command. configure.ac will be used to generate configure,

which is the script that is called for configuration of the software prior to compilation.

GammaLib supports the pkg-config helper system. The file gammalib.pc.in will be used to generate gammalib.pc using the autotools.

In the following, the subdirectories of the gammalib directory are described.

dev

The dev directory contains are couple of scripts and files that are useful for GammaLib development and GammaLib release. Most

developers will not need to use one of these scripts. Below the content of the dev directory:

-rw-r--r-- 1 jurgen staff 925 12 oct 21:35 license_new.txt <- New license text (used by replace_license.py)

-rw-r--r-- 1 jurgen staff 308 12 oct 21:35 license_old.txt <- Old license text (used by replace_license.py)

-rwxr-xr-x 1 jurgen staff 5122 12 oct 21:35 macosx_package.sh <- Create a GammaLib / ctools binary for packaging

-rwxr-xr-x 1 jurgen staff 13654 12 oct 21:35 macosx_testconf.sh <- Tests GammaLib under various Mac OS X configurations

-rwxr-xr-x 1 jurgen staff 12016 12 oct 21:35 macosx_testpkg.sh <- Tests GammaLib / ctools Mac OS X package prior to release

-rwxr-xr-x 1 jurgen staff 2997 12 oct 21:35 release_gammalib.sh <- Create a GammaLib release

-rwxr-xr-x 1 jurgen staff 2586 12 oct 21:35 replace_license.py <- Replace license text in all source and include files

04/25/2024 1/5

http://www.freedesktop.org/wiki/Software/pkg-config

doc

The doc directory contains the GammaLib documentation. Here the content of the directory:

-rw-r--r-- 1 jurgen staff 57183 12 oct 21:35 Doxyfile <- Configuration file for generation of Doxygen documentation

drwxr-xr-x 8 jurgen staff 272 12 oct 21:35 dev <= Development documentation

drwxr-xr-x 14 jurgen staff 476 12 oct 21:35 html <= Web documentation

drwxr-xr-x 3 jurgen staff 102 12 oct 21:35 um <= User Manual

GammaLib uses Doxygen to generate the reference documentation. The file Doxyfile contains the Doxygen configuration that is

applied for this generation.

The dev directory contains all documentation that is relevant for code development. It contains a number of subdirectories, one for

each development document (except of the tn directory which contains all technical notes of the project). Here the actual content of

dev:

drwxr-xr-x 4 jurgen staff 136 12 oct 21:35 coding <= Coding and Design Conventions

drwxr-xr-x 7 jurgen staff 238 12 oct 21:35 inst <= Instrument specific interface

drwxr-xr-x 5 jurgen staff 170 12 oct 21:35 maths <= Mathematical Implementation

drwxr-xr-x 6 jurgen staff 204 12 oct 21:35 sdd <= Software Design Description

drwxr-xr-x 4 jurgen staff 136 12 oct 21:35 srs <= Software Requirement Specification

drwxr-xr-x 4 jurgen staff 136 12 oct 21:35 tn <= Technical Notes

The html directory contains all Web documentation of GammaLib. The Web documentation is published at the following sourceforge

site: http://gammalib.sourceforge.net/

The um directory contains the User Manual for GammaLib.

Note that much of the documentation is not up to date. The only document that can be considered reasonably complete are the

"Coding and Design Conventions".

examples

This directory contains example code that illustrates the usage of GammaLib. So far, only a single example named readmodel exists.

To compile this example, step into the examples/readmodel directory and type

$ make

Note that GammaLib needs to be installed prior to compilation. Also, the Makefile assumes that GammaLib has been installed in the

path /usr/local/gamma. If GammaLib is installed in a different location, please adjust the Makefile.

include

The include directory contains all instrument independent header files for GammaLib. The directory is flat, i.e. no structuration into

modules exists.

To add a new class to GammaLib, simply add a header file to this directory. Add the name of the header file also to the Makefile.am

script, and add a

#include "GClass.hpp"

directive to GammaLib.hpp to include the new header in the GammaLib master header file (in this example we supposed that the

new header file is named GClass.hpp).

inst

04/25/2024 2/5

http://gammalib.sourceforge.net/

This directory contains the instrument specific source code. There is one directory per instrument. The Makefile.am gathers

information for all subdirectories, and it is one of the files that needs to be adapted when a new instrument should be added.

A typical instrument specific directory has the following structure (here the example of cta):

-rw-r--r-- 1 jurgen staff 2732 12 oct 21:35 Makefile.am <- automake input file

drwxr-xr-x 15 jurgen staff 510 12 oct 21:35 caldb <= calibration data

drwxr-xr-x 21 jurgen staff 714 12 oct 21:35 include <= include files

drwxr-xr-x 20 jurgen staff 680 12 oct 21:35 pyext <= Python binding definition files (for swig)

drwxr-xr-x 24 jurgen staff 816 12 oct 21:35 src <= source code

drwxr-xr-x 18 jurgen staff 612 12 oct 21:35 test <= code for unit testing

The Makefile.am is the input file that will be used by automake to generate a Makefile. This file needs to be modified if code is added

to the interface.

The structure of the caldb directory depends strongly on the instrument. The data contained in this directory will be used for unit

testing, and will be installed together with the software.

The include directory is a flat directory, containing all header files for the instrument dependent code. It's structure is similar to the

include directory of the instrument independent code. Instead of the GammaLib.hpp file (which gathers all headers for the instrument

independent code), a file gathering all headers for the instrument dependent code will exist (for CTA this file is named GCTALib.hpp).

The pyext directory is a flat directory, containing all interface files that will be processed by swig to create the Python wrapper files.

There is one interface file for each class. All interface files a gathered in a summary file (for CTA this file is named cta.i). If a class

interface should be added it is sufficient to add the respective file to the summary file.

The src directory is a flat directory, containing all source code.

The test directory contains all code and data needed for unit testing. In addition, it may contain an (arbitrary) number of test scripts

and programs that are useful for testing the functionalities of the instrument specific interface. Here the example for the cta interface:

-rw-r--r-- 1 jurgen staff 982 12 oct 21:35 README

drwxr-xr-x 14 jurgen staff 476 12 oct 21:35 data

-rwxr-xr-x 1 jurgen staff 2338 12 oct 21:35 example_binned_ml_fit.py

-rwxr-xr-x 1 jurgen staff 1672 12 oct 21:35 example_make_model.py

-rwxr-xr-x 1 jurgen staff 3889 12 oct 21:35 example_sim_photons.py

-rw-r--r-- 1 jurgen staff 20474 12 oct 21:35 test_CTA.cpp

-rw-r--r-- 1 jurgen staff 3868 12 oct 21:35 test_CTA.hpp

-rwxr-xr-x 1 jurgen staff 1578 12 oct 21:35 test_CTA.py

-rwxr-xr-x 1 jurgen staff 1998 12 oct 21:35 test_gauss.py

-rwxr-xr-x 1 jurgen staff 5056 12 oct 21:35 test_irf_offset.py

-rwxr-xr-x 1 jurgen staff 1561 12 oct 21:35 test_irf_trafo.py

-rwxr-xr-x 1 jurgen staff 6408 12 oct 21:35 test_model.py

-rwxr-xr-x 1 jurgen staff 3388 12 oct 21:35 test_npred_computation.py

-rwxr-xr-x 1 jurgen staff 3492 12 oct 21:35 test_npred_intergation.py

-rwxr-xr-x 1 jurgen staff 2393 12 oct 21:35 test_radial_acceptance.py

-rwxr-xr-x 1 jurgen staff 1944 12 oct 21:35 test_response_table.py

The README file contains more information about the various test files that exist in this directory. The data directory contains data

needed for unit testing. The files test_CTA.cpp and test_CTA.hpp are used for unit testing of the C++ code, the file test_CTA.py is

used for unit testing of the Python interface.

m4

This directory contains autoconf macros. Some of the macros are actually used by the configure script during testing of the system

configuration, other macros are still there for legacy.

In case you need to add a test to the configure script that makes use of a non-standard macro, please add the macro to this folder to

make sure that it will be available during the configuration step.

pyext

04/25/2024 3/5

The pyext directory contains all interface files that will be processed by swig to create the Python wrapper files. There is one interface

file for each class. All these files are directly located in the pyext directory.

The Python interface is organized into modules, mainly to reduce the size of the Python wrapper code. The definitions of the modules

are found in the gammalib subdirectory, which has the following content:

-rw-r--r-- 1 jurgen staff 2194 12 oct 21:35 app.i

-rw-r--r-- 1 jurgen staff 3024 12 oct 21:35 fits.i

-rw-r--r-- 1 jurgen staff 2234 12 oct 21:35 linalg.i

-rw-r--r-- 1 jurgen staff 3101 12 oct 21:35 model.i

-rw-r--r-- 1 jurgen staff 2209 12 oct 21:35 numerics.i

-rw-r--r-- 1 jurgen staff 2543 12 oct 21:35 obs.i

-rw-r--r-- 1 jurgen staff 2225 12 oct 21:35 opt.i

-rw-r--r-- 1 jurgen staff 2348 12 oct 21:35 sky.i

-rw-r--r-- 1 jurgen staff 2070 12 oct 21:35 support.i

-rw-r--r-- 1 jurgen staff 2186 12 oct 21:35 test.i

-rw-r--r-- 1 jurgen staff 2298 12 oct 21:35 xml.i

Each of these files is a summary file for one module. By means of %include directives, each summary file includes the interface files

that should be gathered into the module. If a new class should be added to a module you have to add an %include directive to the

respective module. Please make sure that a given interface file is not included in several modules.

The pyext directory contains a Makefile.am that defines how the modules will be built. The files needs to be modified when a new

module (or a new instrument) should be added. If a new class is added to an existing module, no modification is required.

The directory also contains a file setup.py.in that is used for building and installing the Python wrappers. This file will be converted

into a file setup.py by the configuration step. The files needs to be modified when a new module (or a new instrument) should be

added. If a new class is added to an existing module, no modification is required.

src

The src directory is where all instrument independent source code lives. The directory has the following content:

-rw-r--r-- 1 jurgen staff 2074 12 oct 21:35 Makefile.am

drwxr-xr-x 8 jurgen staff 272 12 oct 21:35 app

drwxr-xr-x 36 jurgen staff 1224 12 oct 21:35 fits

-rwxr-xr-x 1 jurgen staff 814 12 oct 21:35 gammalib-init.csh

-rwxr-xr-x 1 jurgen staff 793 12 oct 21:35 gammalib-init.sh

-rw-r--r-- 1 jurgen staff 5636 12 oct 21:35 gammalib-setup.in

drwxr-xr-x 13 jurgen staff 442 12 oct 21:35 linalg

drwxr-xr-x 35 jurgen staff 1190 12 oct 21:35 model

drwxr-xr-x 8 jurgen staff 272 12 oct 21:35 numerics

drwxr-xr-x 25 jurgen staff 850 12 oct 21:35 obs

drwxr-xr-x 7 jurgen staff 238 12 oct 21:35 opt

drwxr-xr-x 15 jurgen staff 510 12 oct 21:35 sky

drwxr-xr-x 8 jurgen staff 272 12 oct 21:35 support

drwxr-xr-x 4 jurgen staff 136 12 oct 21:35 template

drwxr-xr-x 7 jurgen staff 238 12 oct 21:35 test

drwxr-xr-x 12 jurgen staff 408 12 oct 21:35 xml

Each subdirectory presents a specific module. As example, the content of the app subdirectory is

-rw-r--r-- 1 jurgen staff 20078 12 oct 21:35 GApplication.cpp

-rw-r--r-- 1 jurgen staff 8383 12 oct 21:35 GException_app.cpp

-rw-r--r-- 1 jurgen staff 26817 12 oct 21:35 GLog.cpp

-rw-r--r-- 1 jurgen staff 32253 12 oct 21:35 GPar.cpp

-rw-r--r-- 1 jurgen staff 39490 12 oct 21:35 GPars.cpp

-rw-r--r-- 1 jurgen staff 499 12 oct 21:35 Makefile.am

04/25/2024 4/5

These directories contain the code for all GammaLib classes. Typically, there is one file per class. The Makefile.am in these

subdirectories gather the names of all files that need be compiled. If a new file is added to the subdirectory, Makefile.am needs to be

updated.

Often, the subdirectories contain a file named GException_xxx.cpp, where xxx is the name of the module. This file implements the

exception classes that are relevant for this module. The definition of these exception classes are found in the file GException.hpp,

situated in the gammalib/include directory.

The src directory also contains a Makefile.am which gathers informations about all modules and instrument interfaces that are

present. If a module is added ot if a new instrument interface is added, this file needs to be modified.

Finally, the src directory contains the scripts gammalib-init.csh, gammalib-init.sh, and gammalib-setup.in. These scripts will be

installed in the bin directory of the GammaLib installation, and will serve to configure the GammaLib environment. If modifications to

the environment are required, the file gammalib-setup.in should be changed.

test

The test directory contains all code and data that are needed for unit testing. In addition, it may contain any kind of script that is

useful for testing some functionalities of GammaLib. Here is a selected list of files or folders that are present in the directory:

-rw-r--r-- 1 jurgen staff 5513 12 oct 21:35 Makefile.am <- automake input file

-rw-r--r-- 1 jurgen staff 755 12 oct 21:35 README

drwxr-xr-x 7 jurgen staff 238 12 oct 21:35 data <= test data directory

drwxr-xr-x 3 jurgen staff 102 12 oct 21:35 reports <= test reports directory

-rw-r--r-- 1 jurgen staff 4960 12 oct 21:35 test_GApplication.cpp <- source code for C++ module test

-rw-r--r-- 1 jurgen staff 2454 12 oct 21:35 test_GApplication.hpp <- header file for C++ module test

-rwxr-xr-x 1 jurgen staff 4115 12 oct 21:35 test_GApplication.py <- script for Python module test

drwxr-xr-x 13 jurgen staff 442 12 oct 21:35 testinst <= Instrument for testing of instrument interface

The Makefile.am file is the input file from which automake will generate a Makefile. This Makefile will be executed when make check

is invoked. If a new module or a new instrument is added, this file needs to be modified.

For each module there is a C++ source code file, a C++ header file and a Python script. These files will be used during make check

to perform the C++ and Python unit tests for a given module.

The testinst directory implements a test instrument that is used to test the instrument interface. The test instrument is realized by

header files only, hence no compilation is performed. To include the test instrument in any unit test, the testinst/GTestLib.hpp file

needs to be included in the test. See test_GObservation.cpp for an example.

Powered by TCPDF (www.tcpdf.org)

04/25/2024 5/5

http://www.tcpdf.org

