1
|
|
2
|
|
3
|
import gammalib
|
4
|
import ctools
|
5
|
import cscripts
|
6
|
import numpy as np
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
if __name__ == '__main__':
|
12
|
|
13
|
ra = 0.0
|
14
|
dec = 0.0
|
15
|
obs_offset = 1.0
|
16
|
|
17
|
noff = 4
|
18
|
size = 0.3
|
19
|
off_offset = 1.0
|
20
|
|
21
|
nbins = 31
|
22
|
duration = 1800
|
23
|
emin = 0.03
|
24
|
emax = 100
|
25
|
rad = 5.0
|
26
|
caldb = 'prod3b'
|
27
|
irf = 'South_z20_30m'
|
28
|
|
29
|
pattern = cscripts.obsutils.set_obs_patterns("single", ra=ra, dec=dec, offset=obs_offset)
|
30
|
obs = cscripts.obsutils.set_obs_list(pattern, duration=duration, emin=emin, emax=emax, rad=rad, caldb=caldb, irf=irf)
|
31
|
|
32
|
xmlname = './crab.xml'
|
33
|
obs.models(gammalib.GModels(xmlname))
|
34
|
|
35
|
obs = cscripts.obsutils.sim(obs)
|
36
|
|
37
|
|
38
|
ondir = gammalib.GSkyDir()
|
39
|
ondir.radec_deg(ra,dec)
|
40
|
|
41
|
on = gammalib.GSkyRegions()
|
42
|
onreg = gammalib.GSkyRegionCircle(ondir,size)
|
43
|
on.append(onreg)
|
44
|
|
45
|
|
46
|
off = gammalib.GSkyRegions()
|
47
|
ra_off = [0,1,0,-1]
|
48
|
dec_off = [1,0,-1,-1]
|
49
|
for i in range(noff):
|
50
|
|
51
|
offdir = gammalib.GSkyDir()
|
52
|
offdir.radec_deg(ra_off[i], dec_off[i])
|
53
|
|
54
|
offreg = gammalib.GSkyRegionCircle(offdir, size)
|
55
|
off.append(offreg)
|
56
|
|
57
|
|
58
|
|
59
|
etrue = gammalib.GEbounds(nbins, gammalib.GEnergy(emin, "TeV"), gammalib.GEnergy(emax, "TeV"))
|
60
|
ereco = gammalib.GEbounds(nbins, gammalib.GEnergy(emin, "TeV"), gammalib.GEnergy(emax, "TeV"))
|
61
|
|
62
|
onoff_container = gammalib.GObservations()
|
63
|
obs_onoff = gammalib.GCTAOnOffObservation(obs[0], etrue, ereco, on, off)
|
64
|
obs_onoff.name("TestCrab")
|
65
|
obs_onoff.id("0001")
|
66
|
|
67
|
onoff_container.append(obs_onoff)
|
68
|
onoff_container.models(gammalib.GModels('crab_fitmodel.xml'))
|
69
|
|
70
|
|
71
|
opt = gammalib.GOptimizerLM()
|
72
|
onoff_container.optimize(opt)
|
73
|
onoff_container.errors(opt)
|
74
|
|
75
|
print(onoff_container.models())
|
76
|
|
77
|
fit_models = onoff_container.models()
|
78
|
gradient = gammalib.GVector()
|
79
|
curvature = gammalib.GMatrixSparse()
|
80
|
npred = []
|
81
|
value = onoff_container[0].likelihood(fit_models, gradient, curvature, npred)
|
82
|
|
83
|
|
84
|
|