psf_models.html

Deil Christoph, 02/14/2013 07:29 PM

Download (245 KB)

 
1
<html>
2
<head>
3
<style type="text/css">
4
/**
5
 * HTML5 ✰ Boilerplate
6
 *
7
 * style.css contains a reset, font normalization and some base styles.
8
 *
9
 * Credit is left where credit is due.
10
 * Much inspiration was taken from these projects:
11
 * - yui.yahooapis.com/2.8.1/build/base/base.css
12
 * - camendesign.com/design/
13
 * - praegnanz.de/weblog/htmlcssjs-kickstart
14
 */
15

16

17
/**
18
 * html5doctor.com Reset Stylesheet (Eric Meyer's Reset Reloaded + HTML5 baseline)
19
 * v1.6.1 2010-09-17 | Authors: Eric Meyer & Richard Clark
20
 * html5doctor.com/html-5-reset-stylesheet/
21
 */
22

23
html, body, div, span, object, iframe,
24
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
25
abbr, address, cite, code, del, dfn, em, img, ins, kbd, q, samp,
26
small, strong, sub, sup, var, b, i, dl, dt, dd, ol, ul, li,
27
fieldset, form, label, legend,
28
table, caption, tbody, tfoot, thead, tr, th, td,
29
article, aside, canvas, details, figcaption, figure,
30
footer, header, hgroup, menu, nav, section, summary,
31
time, mark, audio, video {
32
  margin: 0;
33
  padding: 0;
34
  border: 0;
35
  font-size: 100%;
36
  font: inherit;
37
  vertical-align: baseline;
38
}
39

40
sup { vertical-align: super; }
41
sub { vertical-align: sub; }
42

43
article, aside, details, figcaption, figure,
44
footer, header, hgroup, menu, nav, section {
45
  display: block;
46
}
47

48
blockquote, q { quotes: none; }
49

50
blockquote:before, blockquote:after,
51
q:before, q:after { content: ""; content: none; }
52

53
ins { background-color: #ff9; color: #000; text-decoration: none; }
54

55
mark { background-color: #ff9; color: #000; font-style: italic; font-weight: bold; }
56

57
del { text-decoration: line-through; }
58

59
abbr[title], dfn[title] { border-bottom: 1px dotted; cursor: help; }
60

61
table { border-collapse: collapse; border-spacing: 0; }
62

63
hr { display: block; height: 1px; border: 0; border-top: 1px solid #ccc; margin: 1em 0; padding: 0; }
64

65
input, select { vertical-align: middle; }
66

67

68
/**
69
 * Font normalization inspired by YUI Library's fonts.css: developer.yahoo.com/yui/
70
 */
71

72
body { font:13px/1.231 sans-serif; *font-size:small; } /* Hack retained to preserve specificity */
73
select, input, textarea, button { font:99% sans-serif; }
74

75
/* Normalize monospace sizing:
76
   en.wikipedia.org/wiki/MediaWiki_talk:Common.css/Archive_11#Teletype_style_fix_for_Chrome */
77
pre, code, kbd, samp { font-family: monospace, sans-serif; }
78

79
em,i { font-style: italic; }
80
b,strong { font-weight: bold; }
81

    
82
</style>
83
<style type="text/css">
84

85
/* Flexible box model classes */
86
/* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */
87
 
88
.hbox {
89
        display: -webkit-box;
90
        -webkit-box-orient: horizontal;
91
        -webkit-box-align: stretch;
92
 
93
        display: -moz-box;
94
        -moz-box-orient: horizontal;
95
        -moz-box-align: stretch;
96
 
97
        display: box;
98
        box-orient: horizontal;
99
        box-align: stretch;
100
}
101
 
102
.hbox > * {
103
        -webkit-box-flex: 0;
104
        -moz-box-flex: 0;
105
        box-flex: 0;
106
}
107
 
108
.vbox {
109
        display: -webkit-box;
110
        -webkit-box-orient: vertical;
111
        -webkit-box-align: stretch;
112
 
113
        display: -moz-box;
114
        -moz-box-orient: vertical;
115
        -moz-box-align: stretch;
116
 
117
        display: box;
118
        box-orient: vertical;
119
        box-align: stretch;
120
}
121
 
122
.vbox > * {
123
        -webkit-box-flex: 0;
124
        -moz-box-flex: 0;
125
        box-flex: 0;
126
}
127
  
128
.reverse {
129
        -webkit-box-direction: reverse;
130
        -moz-box-direction: reverse;
131
        box-direction: reverse;
132
}
133
 
134
.box-flex0 {
135
        -webkit-box-flex: 0;
136
        -moz-box-flex: 0;
137
        box-flex: 0;
138
}
139
 
140
.box-flex1, .box-flex {
141
        -webkit-box-flex: 1;
142
        -moz-box-flex: 1;
143
        box-flex: 1;
144
}
145
 
146
.box-flex2 {
147
        -webkit-box-flex: 2;
148
        -moz-box-flex: 2;
149
        box-flex: 2;
150
}
151
 
152
.box-group1 {
153
        -webkit-box-flex-group: 1;
154
        -moz-box-flex-group: 1;
155
        box-flex-group: 1;
156
}
157
 
158
.box-group2 {
159
        -webkit-box-flex-group: 2;
160
        -moz-box-flex-group: 2;
161
        box-flex-group: 2;
162
}
163
 
164
.start {
165
        -webkit-box-pack: start;
166
        -moz-box-pack: start;
167
        box-pack: start;
168
}
169
 
170
.end {
171
        -webkit-box-pack: end;
172
        -moz-box-pack: end;
173
        box-pack: end;
174
}
175
 
176
.center {
177
        -webkit-box-pack: center;
178
        -moz-box-pack: center;
179
        box-pack: center;
180
}
181

    
182
</style>
183
<style type="text/css">
184
/**
185
 * Primary styles
186
 *
187
 * Author: IPython Development Team
188
 */
189

190

191
body {
192
    overflow: hidden;
193
}
194

195
blockquote {
196
    border-left: 4px solid #DDD;
197
    padding: 0 15px;
198
    color: #777;
199
}
200

201
span#save_widget {
202
    padding: 5px;
203
    margin: 0px 0px 0px 300px;
204
    display:inline-block;
205
}
206

207
span#notebook_name {
208
    height: 1em;
209
    line-height: 1em;
210
    padding: 3px;
211
    border: none;
212
    font-size: 146.5%;
213
}
214

215
.ui-menubar-item .ui-button .ui-button-text {
216
    padding: 0.4em 1.0em;
217
    font-size: 100%;
218
}
219

220
.ui-menu {
221
  -moz-box-shadow:    0px 6px 10px -1px #adadad;
222
  -webkit-box-shadow: 0px 6px 10px -1px #adadad;
223
  box-shadow:         0px 6px 10px -1px #adadad;
224
}
225

226
.ui-menu .ui-menu-item a {
227
    border: 1px solid transparent;
228
    padding: 2px 1.6em;
229
}
230

231
.ui-menu .ui-menu-item a.ui-state-focus {
232
    margin: 0;
233
}
234

235
.ui-menu hr {
236
    margin: 0.3em 0;
237
}
238

239
#menubar_container {
240
    position: relative;
241
}
242

243
#notification_area {
244
    position: absolute;
245
    right: 0px;
246
    top: 0px;
247
    height: 25px;
248
    padding: 3px 0px;
249
    padding-right: 3px;
250
    z-index: 10;
251
}
252

253
.notification_widget{
254
    float : right;
255
    right: 0px;
256
    top: 1px;
257
    height: 25px;
258
    padding: 3px 6px;
259
    z-index: 10;
260
}
261

262
.toolbar {
263
    padding: 3px 15px;
264
}
265

266
#cell_type {
267
    font-size: 85%;
268
}
269

270

271
div#main_app {
272
    width: 100%;
273
    position: relative;
274
}
275

276
span#quick_help_area {
277
    position: static;
278
    padding: 5px 0px;
279
    margin: 0px 0px 0px 0px;
280
}
281

282
.help_string {
283
    float: right;
284
    width: 170px;
285
    padding: 0px 5px;
286
    text-align: left;
287
    font-size: 85%;
288
}
289

290
.help_string_label {
291
    float: right;
292
    font-size: 85%;
293
}
294

295
div#notebook_panel {
296
    margin: 0px 0px 0px 0px;
297
    padding: 0px;
298
}
299

300
div#notebook {
301
    overflow-y: scroll;
302
    overflow-x: auto;
303
    width: 100%;
304
    /* This spaces the cell away from the edge of the notebook area */
305
    padding: 5px 5px 15px 5px;
306
    margin: 0px;
307
    background-color: white;
308
}
309

310
div#pager_splitter {
311
    height: 8px;
312
}
313

314
#pager_container {
315
    position : relative;
316
}
317

318
div#pager {
319
    padding: 15px;
320
    overflow: auto;
321
    display: none;
322
}
323

324
div.ui-widget-content {
325
    border: 1px solid #aaa;
326
    outline: none;
327
}
328

329
.cell {
330
    border: 1px solid transparent;
331
}
332

333
div.cell {
334
    width: 100%;
335
    padding: 5px 5px 5px 0px;
336
    /* This acts as a spacer between cells, that is outside the border */
337
    margin: 2px 0px 2px 0px;
338
}
339

340
div.code_cell {
341
    background-color: white;
342
}
343

344
/* any special styling for code cells that are currently running goes here */
345
div.code_cell.running {
346
}
347

348
div.prompt {
349
    /* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
350
    width: 11ex;
351
    /* This 0.4em is tuned to match the padding on the CodeMirror editor. */
352
    padding: 0.4em;
353
    margin: 0px;
354
    font-family: monospace;
355
    text-align:right;
356
}
357

358
div.input {
359
    page-break-inside: avoid;
360
}
361

362
/* input_area and input_prompt must match in top border and margin for alignment */
363
div.input_area {
364
    color: black;
365
    border: 1px solid #ddd;
366
    border-radius: 3px;
367
    background: #f7f7f7;
368
}
369

370
div.input_prompt {
371
    color: navy;
372
    border-top: 1px solid transparent;
373
}
374

375
div.output_wrapper {
376
    /* This is a spacer between the input and output of each cell */
377
    margin-top: 5px;
378
    margin-left: 5px;
379
    /* FF needs explicit width to stretch */
380
    width: 100%;
381
    /* this position must be relative to enable descendents to be absolute within it */
382
    position: relative;
383
}
384

385
/* class for the output area when it should be height-limited */
386
div.output_scroll {
387
  /* ideally, this would be max-height, but FF barfs all over that */
388
  height: 24em;
389
  /* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
390
  width: 100%;
391
  
392
  overflow: auto;
393
  border-radius: 3px;
394
  box-shadow: inset 0 2px 8px rgba(0, 0, 0, .8);
395
}
396

397
/* output div while it is collapsed */
398
div.output_collapsed {
399
  margin-right: 5px;
400
}
401

402
div.out_prompt_overlay {
403
  height: 100%;
404
  padding: 0px;
405
  position: absolute;
406
  border-radius: 3px;
407
}
408

409
div.out_prompt_overlay:hover {
410
  /* use inner shadow to get border that is computed the same on WebKit/FF */
411
  box-shadow: inset 0 0 1px #000;
412
  background: rgba(240, 240, 240, 0.5);
413
}
414

415
div.output_prompt {
416
    color: darkred;
417
    /* 5px right shift to account for margin in parent container */
418
    margin: 0 5px 0 -5px;
419
}
420

421
/* This class is the outer container of all output sections. */
422
div.output_area {
423
    padding: 0px;
424
    page-break-inside: avoid;
425
}
426

427
/* This class is for the output subarea inside the output_area and after
428
   the prompt div. */
429
div.output_subarea {
430
    padding: 0.44em 0.4em 0.4em 1px;
431
}
432

433
/* The rest of the output_* classes are for special styling of the different
434
   output types */
435

436
/* all text output has this class: */
437
div.output_text {
438
    text-align: left;
439
    color: black;
440
    font-family: monospace;
441
}
442

443
/* stdout/stderr are 'text' as well as 'stream', but pyout/pyerr are *not* streams */
444
div.output_stream {
445
    padding-top: 0.0em;
446
    padding-bottom: 0.0em;
447
}
448
div.output_stdout {
449
}
450
div.output_stderr {
451
    background: #fdd; /* very light red background for stderr */
452
}
453

454
div.output_latex {
455
    text-align: left;
456
    color: black;
457
}
458

459
div.output_html {
460
}
461

462
div.output_png {
463
}
464

465
div.output_jpeg {
466
}
467

468
div.text_cell {
469
    background-color: white;
470
    padding: 5px 5px 5px 5px;
471
}
472

473
div.text_cell_input {
474
    color: black;
475
    border: 1px solid #ddd;
476
    border-radius: 3px;
477
    background: #f7f7f7;
478
}
479

480
div.text_cell_render {
481
    font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;
482
    outline: none;
483
    resize: none;
484
    width:  inherit;
485
    border-style: none;
486
    padding: 5px;
487
    color: black;
488
}
489

490
/* The following gets added to the <head> if it is detected that the user has a
491
 * monospace font with inconsistent normal/bold/italic height.  See
492
 * notebookmain.js.  Such fonts will have keywords vertically offset with
493
 * respect to the rest of the text.  The user should select a better font. 
494
 * See: https://github.com/ipython/ipython/issues/1503
495
 *
496
 * .CodeMirror span {
497
 *      vertical-align: bottom;
498
 * }
499
 */
500

501
.CodeMirror {
502
    line-height: 1.231;  /* Changed from 1em to our global default */
503
}
504

505
.CodeMirror-scroll {
506
    height: auto;     /* Changed to auto to autogrow */
507
    /*  The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
508
    /*  We have found that if it is visible, vertical scrollbars appear with font size changes.*/
509
    overflow-y: hidden;
510
    overflow-x: auto; /* Changed from auto to remove scrollbar */
511
}
512

513
/* CSS font colors for translated ANSI colors. */
514

515

516
.ansiblack {color: black;}
517
.ansired {color: darkred;}
518
.ansigreen {color: darkgreen;}
519
.ansiyellow {color: brown;}
520
.ansiblue {color: darkblue;}
521
.ansipurple {color: darkviolet;}
522
.ansicyan {color: steelblue;}
523
.ansigrey {color: grey;}
524
.ansibold {font-weight: bold;}
525

526
.completions {
527
    position: absolute;
528
    z-index: 10;
529
    overflow: hidden;
530
    border: 1px solid grey;
531
}
532

533
.completions select {
534
    background: white;
535
    outline: none;
536
    border: none;
537
    padding: 0px;
538
    margin: 0px;
539
    overflow: auto;
540
    font-family: monospace;
541
}
542

543
option.context {
544
  background-color: #DEF7FF;
545
}
546
option.introspection {
547
  background-color: #EBF4EB;
548
}
549

550
/*fixed part of the completion*/
551
.completions p b {
552
    font-weight:bold;
553
}
554

555
.completions p {
556
    background: #DDF;
557
    /*outline: none;
558
    padding: 0px;*/
559
    border-bottom: black solid 1px;
560
    padding: 1px;
561
    font-family: monospace;
562
}
563

564
pre.dialog {
565
    background-color: #f7f7f7;
566
    border: 1px solid #ddd;
567
    border-radius: 3px;
568
    padding: 0.4em;
569
    padding-left: 2em;
570
}
571

572
p.dialog {
573
    padding : 0.2em;
574
}
575

576
.shortcut_key {
577
    display: inline-block;
578
    width: 15ex;
579
    text-align: right;
580
    font-family: monospace;
581
}
582

583
.shortcut_descr {
584
}
585

586
/* Word-wrap output correctly.  This is the CSS3 spelling, though Firefox seems
587
   to not honor it correctly.  Webkit browsers (Chrome, rekonq, Safari) do.
588
 */
589
pre, code, kbd, samp { white-space: pre-wrap; }
590

591
#fonttest {
592
    font-family: monospace;
593
}
594

595
.js-error {
596
    color: darkred;
597
}
598

    
599
</style>
600
<style type="text/css">
601
.rendered_html {color: black;}
602
.rendered_html em {font-style: italic;}
603
.rendered_html strong {font-weight: bold;}
604
.rendered_html u {text-decoration: underline;}
605
.rendered_html :link { text-decoration: underline }
606
.rendered_html :visited { text-decoration: underline }
607
.rendered_html h1 {font-size: 197%; margin: .65em 0; font-weight: bold;}
608
.rendered_html h2 {font-size: 153.9%; margin: .75em 0; font-weight: bold;}
609
.rendered_html h3 {font-size: 123.1%; margin: .85em 0; font-weight: bold;}
610
.rendered_html h4 {font-size: 100% margin: 0.95em 0; font-weight: bold;}
611
.rendered_html h5 {font-size: 85%; margin: 1.5em 0; font-weight: bold;}
612
.rendered_html h6 {font-size: 77%; margin: 1.65em 0; font-weight: bold;}
613
.rendered_html ul {list-style:disc; margin: 1em 2em;}
614
.rendered_html ul ul {list-style:square; margin: 0em 2em;}
615
.rendered_html ul ul ul {list-style:circle; margin-left: 0em 2em;}
616
.rendered_html ol {list-style:upper-roman; margin: 1em 2em;}
617
.rendered_html ol ol {list-style:upper-alpha; margin: 0em 2em;}
618
.rendered_html ol ol ol {list-style:decimal; margin: 0em 2em;}
619
.rendered_html ol ol ol ol {list-style:lower-alpha; margin: 0em 2em;}
620
.rendered_html ol ol ol ol ol {list-style:lower-roman; margin: 0em 2em;}
621

622
.rendered_html hr {
623
    color: black;
624
    background-color: black;
625
}
626

627
.rendered_html pre {
628
    margin: 1em 2em;
629
}
630

631
.rendered_html blockquote {
632
    margin: 1em 2em;
633
}
634

635
.rendered_html table {
636
    border: 1px solid black;
637
    border-collapse: collapse;
638
    margin: 1em 2em;
639
}
640

641
.rendered_html td {
642
    border: 1px solid black;
643
    text-align: left;
644
    vertical-align: middle;
645
    padding: 4px;
646
}
647

648
.rendered_html th {
649
    border: 1px solid black;
650
    text-align: left;
651
    vertical-align: middle;
652
    padding: 4px;
653
    font-weight: bold;
654
}
655

656
.rendered_html tr {
657
    border: 1px solid black;
658
}    
659

660
.rendered_html p + p {
661
    margin-top: 1em;
662
}
663

    
664

    
665
</style>
666
<style type="text/css">
667
/* Overrides of notebook CSS for static HTML export
668

669
*/
670
body {
671
  overflow: visible;
672
  padding: 8px;
673
}
674
.input_area {
675
  padding: 0.4em;
676
}
677

    
678
</style>
679
<meta charset="UTF-8">
680
<style type="text/css">
681
.highlight .hll { background-color: #ffffcc }
682
.highlight  { background: #f8f8f8; }
683
.highlight .c { color: #408080; font-style: italic } /* Comment */
684
.highlight .err { border: 1px solid #FF0000 } /* Error */
685
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
686
.highlight .o { color: #666666 } /* Operator */
687
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
688
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
689
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
690
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
691
.highlight .gd { color: #A00000 } /* Generic.Deleted */
692
.highlight .ge { font-style: italic } /* Generic.Emph */
693
.highlight .gr { color: #FF0000 } /* Generic.Error */
694
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
695
.highlight .gi { color: #00A000 } /* Generic.Inserted */
696
.highlight .go { color: #808080 } /* Generic.Output */
697
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
698
.highlight .gs { font-weight: bold } /* Generic.Strong */
699
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
700
.highlight .gt { color: #0040D0 } /* Generic.Traceback */
701
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
702
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
703
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
704
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
705
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
706
.highlight .kt { color: #B00040 } /* Keyword.Type */
707
.highlight .m { color: #666666 } /* Literal.Number */
708
.highlight .s { color: #BA2121 } /* Literal.String */
709
.highlight .na { color: #7D9029 } /* Name.Attribute */
710
.highlight .nb { color: #008000 } /* Name.Builtin */
711
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
712
.highlight .no { color: #880000 } /* Name.Constant */
713
.highlight .nd { color: #AA22FF } /* Name.Decorator */
714
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
715
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
716
.highlight .nf { color: #0000FF } /* Name.Function */
717
.highlight .nl { color: #A0A000 } /* Name.Label */
718
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
719
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
720
.highlight .nv { color: #19177C } /* Name.Variable */
721
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
722
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
723
.highlight .mf { color: #666666 } /* Literal.Number.Float */
724
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
725
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
726
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
727
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
728
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
729
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
730
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
731
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
732
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
733
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
734
.highlight .sx { color: #008000 } /* Literal.String.Other */
735
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
736
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
737
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
738
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
739
.highlight .vc { color: #19177C } /* Name.Variable.Class */
740
.highlight .vg { color: #19177C } /* Name.Variable.Global */
741
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
742
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
743
</style>
744
<script src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS_HTML" type="text/javascript">
745

    
746
</script>
747
<script type="text/javascript">
748
init_mathjax = function() {
749
    if (window.MathJax) {
750
        // MathJax loaded
751
        MathJax.Hub.Config({
752
            tex2jax: {
753
                inlineMath: [ ['$','$'], ["\\(","\\)"] ],
754
                displayMath: [ ['$$','$$'], ["\\[","\\]"] ]
755
            },
756
            displayAlign: 'left', // Change this to 'center' to center equations.
757
            "HTML-CSS": {
758
                styles: {'.MathJax_Display': {"margin": 0}}
759
            }
760
        });
761
        MathJax.Hub.Queue(["Typeset",MathJax.Hub]);
762
    }
763
}
764
init_mathjax();
765
</script>
766
</head>
767
<body>
768
<div class="text_cell_render border-box-sizing rendered_html">
769
<h1>
770
  PSF Models
771
</h1>
772
</div>
773
<div class="text_cell_render border-box-sizing rendered_html">
774
<p>Here I prototype some PSF models we are considering in Python to make a few plots for the internal note.</p>
775
<p>Some things are already implemented in gammalib:
776
http://gammalib.sourceforge.net/doxygen/classGCTAPsf2D.html
777
http://gammalib.sourceforge.net/doxygen/classGLATPsf.html</p>
778
<p>Everything we actually end up using should eventually be implemented properly in gammalib.</p>
779
<p>TODO:</p>
780
<ul>
781
<li>Plot cumulative distributions, i.e. containment fraction</li>
782
<li>Plot containment radius, which is like containment fraction, but with x- and y-axis exchanged.</li>
783
</ul>
784
</div>
785
<div class="cell border-box-sizing code_cell vbox">
786
<div class="input hbox">
787
<div class="prompt input_prompt">In&nbsp;[1]:</div>
788
<div class="input_area box-flex1">
789
<div class="highlight"><pre><span class="c"># Execute this if you didn&#39;t start this notebook with --pylab=inline</span>
790
<span class="o">%</span><span class="k">pylab</span> <span class="n">inline</span>
791
</pre></div>
792

    
793
</div>
794
</div>
795
<div class="vbox output_wrapper">
796
<div class="output vbox">
797
<div class="hbox output_area">
798
<div class="prompt output_prompt"></div>
799
<div class="output_subarea output_stream output_stdout">
800
<pre>
801
Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].
802
For more information, type &apos;help(pylab)&apos;.
803
</pre>
804
</div>
805
</div>
806
</div>
807
</div>
808
</div>
809
<div class="cell border-box-sizing code_cell vbox">
810
<div class="input hbox">
811
<div class="prompt input_prompt">In&nbsp;[2]:</div>
812
<div class="input_area box-flex1">
813
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
814
<span class="kn">from</span> <span class="nn">numpy</span> <span class="kn">import</span> <span class="n">pi</span><span class="p">,</span> <span class="n">sort</span><span class="p">,</span> <span class="n">exp</span><span class="p">,</span> <span class="n">log</span>
815
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
816
</pre></div>
817

    
818
</div>
819
</div>
820
</div>
821
<div class="text_cell_render border-box-sizing rendered_html">
822
<h2>
823
  Definition of models
824
</h2>
825
</div>
826
<div class="text_cell_render border-box-sizing rendered_html">
827
<p>We define PSF models as probability density functions (PDFs) in 2D, i.e. as $\frac{dP}{dx dy}$. This is explained in more detail below.</p>
828
<p>TODO:</p>
829
<ul>
830
<li>Implement as classes? Compute normalization integral only once!</li>
831
<li>Implement multi-Gauss and multi-King with correct normalisations.</li>
832
<li>Implement models in ROOT so that we can fit and draw random numbers easily!</li>
833
</ul>
834
</div>
835
<div class="cell border-box-sizing code_cell vbox">
836
<div class="input hbox">
837
<div class="prompt input_prompt">In&nbsp;[3]:</div>
838
<div class="input_area box-flex1">
839
<div class="highlight"><pre><span class="k">def</span> <span class="nf">gauss</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">norm</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
840
    <span class="sd">&quot;&quot;&quot;2D Gauss PDF dP / (dx dy) at r = sqrt(x ** 2 + y ** 2)</span>
841
<span class="sd">    Reference: TODO</span>
842
<span class="sd">    &quot;&quot;&quot;</span>
843
    <span class="n">N</span> <span class="o">=</span> <span class="n">norm</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">pi</span> <span class="o">*</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
844
    <span class="k">return</span> <span class="n">N</span> <span class="o">*</span> <span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="mf">0.5</span> <span class="o">*</span> <span class="n">r</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
845
</pre></div>
846

    
847
</div>
848
</div>
849
</div>
850
<div class="cell border-box-sizing code_cell vbox">
851
<div class="input hbox">
852
<div class="prompt input_prompt">In&nbsp;[4]:</div>
853
<div class="input_area box-flex1">
854
<div class="highlight"><pre><span class="k">def</span> <span class="nf">king</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">gamma</span><span class="p">,</span> <span class="n">norm</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
855
    <span class="sd">&quot;&quot;&quot;2D King PDF dP / (dx dy) at  r = sqrt(x ** 2 + y ** 2)</span>
856
<span class="sd">    Reference: This is the Fermi LAT PSF, see Equation (36) in [1]</span>
857
<span class="sd">    &quot;&quot;&quot;</span>
858
    <span class="n">N</span> <span class="o">=</span> <span class="n">norm</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">pi</span> <span class="o">*</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="mf">1.</span> <span class="o">/</span> <span class="n">gamma</span><span class="p">)</span>
859
    <span class="k">return</span> <span class="n">N</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">gamma</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">r</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">))</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="n">gamma</span><span class="p">)</span>
860
</pre></div>
861

    
862
</div>
863
</div>
864
</div>
865
<div class="text_cell_render border-box-sizing rendered_html">
866
<h2>
867
  Transformation of probability densities
868
</h2>
869
</div>
870
<div class="text_cell_render border-box-sizing rendered_html">
871
<h3>Definitions</h3>
872
<p>There are three equivalent useful ways to describe a two-dimensional, radially symmetric PDF like a PSF.</p>
873
<ul>
874
<li>$A(r) = \frac{dP}{dx dy}$ is the 2D probability density (unit: deg$^{-2}$) in $r = \sqrt{x^2 + y^2}$ (unit: deg). This is the distribution we used above to define our models, but it is rarely shown. A distribution with this shape will be found if histogramming events in $x$ for a small $y$-width stripe along the $x$-axis, or by evaluating the 2D PDF $P(x,y)$ at $P(x, y=0)$.</li>
875
<li>$B(t) = \frac{dP}{dt}$ is the 1D probability density (unit: deg$^2$) in $t = r^2$ (unit: deg$^2$). This is the theta square distribution that is often shown or fitted. A distribution with this shape will be found if histogramming events in $t$.</li>
876
<li>$C(r) = \frac{dP}{dr}$ is the 1D probability density (unit: deg) in $r= \sqrt{x^2 + y^2}$ (unit: deg). This distribution is not often shown or used, but is better suited to visualize differences between different distributions, because the peak is not at the edge. A distribution with this shape will be found if histogramming events in $r$.</li>
877
</ul>
878
<p>Here we derive the relationship between $A$, $B$ and $C$ and illustrate them for the Gauss and King models.
879
When implementing the fit function $B(t)$ for the theta square-distribution it might be better to re-code the formula for $B(t)$ directly.</p>
880
<h3>Relations</h3>
881
<p>Given $A(r)$, how to obtain / evaluate $B(t)$?</p>
882
<ul>
883
<li>$t = r^2$, so $dt = 2 r dr$.</li>
884
<li>$dP = 2\pi r dr A(r)$ follows from the definition of $A$ as the probability $dP$ in a ring at radius $r$ of width $dr$.</li>
885
<li>$B(t) = \frac{dP}{dt} = \frac{2\pi r dr A(r)}{2 r dr} = \pi A(r)$, i.e. using the formula for $A(r)$ above we obtain the formula for $B(t)$ by substituting $r \to \sqrt{t}$ and multiplying by $\pi$.</li>
886
<li>$C(r) = \frac{dP}{dr} = \frac{2 \pi r dr A(r)}{dr} = 2 \pi r A(r)$, i.e. using the formula for $A(r)$ above we obtain the formula for $C(r)$ by multiplying with $2 \pi r$.</li>
887
<li>The relation between $B$ and $C$ is also simple, should we need it: $C(r) = 2 r B(t)$.</li>
888
</ul>
889
</div>
890
<div class="cell border-box-sizing code_cell vbox">
891
<div class="input hbox">
892
<div class="prompt input_prompt">In&nbsp;[5]:</div>
893
<div class="input_area box-flex1">
894
<div class="highlight"><pre><span class="k">def</span> <span class="nf">compute_B</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">r2</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">):</span>
895
    <span class="sd">&quot;&quot;&quot;B(r2) for a given A(r)</span>
896
<span class="sd">    See derivation above.&quot;&quot;&quot;</span>
897
    <span class="n">r</span> <span class="o">=</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r2</span><span class="p">)</span>
898
    <span class="k">return</span> <span class="n">pi</span> <span class="o">*</span> <span class="n">A</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">)</span>
899
</pre></div>
900

    
901
</div>
902
</div>
903
</div>
904
<div class="cell border-box-sizing code_cell vbox">
905
<div class="input hbox">
906
<div class="prompt input_prompt">In&nbsp;[6]:</div>
907
<div class="input_area box-flex1">
908
<div class="highlight"><pre><span class="k">def</span> <span class="nf">compute_C</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">r</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">):</span>
909
    <span class="sd">&quot;&quot;&quot;C(r) for a given A(r)</span>
910
<span class="sd">    See derivation above.&quot;&quot;&quot;</span>
911
    <span class="k">return</span> <span class="mi">2</span> <span class="o">*</span><span class="n">pi</span> <span class="o">*</span> <span class="n">r</span> <span class="o">*</span> <span class="n">A</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">)</span>
912
</pre></div>
913

    
914
</div>
915
</div>
916
</div>
917
<div class="text_cell_render border-box-sizing rendered_html">
918
<p>For the Gauss and King models we implement the $B$ and $C$ PDFs here explicitly in addition to the $A$ PDF given above.</p>
919
<p>This is useful for fitting and for comparing with other code that might use e.g. $B$ directly.</p>
920
</div>
921
<div class="cell border-box-sizing code_cell vbox">
922
<div class="input hbox">
923
<div class="prompt input_prompt">In&nbsp;[7]:</div>
924
<div class="input_area box-flex1">
925
<div class="highlight"><pre><span class="k">def</span> <span class="nf">gauss_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">norm</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
926
    <span class="sd">&quot;&quot;&quot;2D Gauss PDF dP(r2) / dr2 at r2 = x ** 2 + y ** 2&quot;&quot;&quot;</span>
927
    <span class="n">N</span> <span class="o">=</span> <span class="n">norm</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
928
    <span class="k">return</span> <span class="n">N</span> <span class="o">*</span> <span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="mf">0.5</span> <span class="o">*</span> <span class="n">r2</span> <span class="o">/</span> <span class="n">sigma</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span>
929
</pre></div>
930

    
931
</div>
932
</div>
933
</div>
934
<div class="cell border-box-sizing code_cell vbox">
935
<div class="input hbox">
936
<div class="prompt input_prompt">In&nbsp;[8]:</div>
937
<div class="input_area box-flex1">
938
<div class="highlight"><pre><span class="k">def</span> <span class="nf">gauss_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">norm</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
939
    <span class="sd">&quot;&quot;&quot;2D Gauss PDF dP(r) / dr at r = sqrt(x ** 2 + y ** 2)&quot;&quot;&quot;</span>
940
    <span class="n">N</span> <span class="o">=</span> <span class="n">norm</span> <span class="o">*</span> <span class="n">r</span> <span class="o">/</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span>
941
    <span class="k">return</span> <span class="n">N</span> <span class="o">*</span> <span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="mf">0.5</span> <span class="o">*</span> <span class="n">r</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
942
</pre></div>
943

    
944
</div>
945
</div>
946
</div>
947
<div class="cell border-box-sizing code_cell vbox">
948
<div class="input hbox">
949
<div class="prompt input_prompt">In&nbsp;[9]:</div>
950
<div class="input_area box-flex1">
951
<div class="highlight"><pre><span class="k">def</span> <span class="nf">king_B</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">gamma</span><span class="p">,</span> <span class="n">norm</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
952
    <span class="sd">&quot;&quot;&quot;2D King PDF dP(r2) / dr2 at r2 = x ** 2 + y ** 2&quot;&quot;&quot;</span>
953
    <span class="n">N</span> <span class="o">=</span> <span class="n">norm</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="mf">1.</span> <span class="o">/</span> <span class="n">gamma</span><span class="p">)</span>
954
    <span class="k">return</span> <span class="n">N</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">gamma</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">r2</span> <span class="o">/</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">))</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="n">gamma</span><span class="p">)</span>
955
</pre></div>
956

    
957
</div>
958
</div>
959
</div>
960
<div class="cell border-box-sizing code_cell vbox">
961
<div class="input hbox">
962
<div class="prompt input_prompt">In&nbsp;[10]:</div>
963
<div class="input_area box-flex1">
964
<div class="highlight"><pre><span class="k">def</span> <span class="nf">king_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">gamma</span><span class="p">,</span> <span class="n">norm</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
965
    <span class="sd">&quot;&quot;&quot;2D King PDF dP(r) / dr at r = sqrt(x ** 2 + y ** 2)&quot;&quot;&quot;</span>
966
    <span class="n">N</span> <span class="o">=</span> <span class="n">norm</span> <span class="o">*</span> <span class="n">r</span> <span class="o">/</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="mf">1.</span> <span class="o">/</span> <span class="n">gamma</span><span class="p">)</span>
967
    <span class="k">return</span> <span class="n">N</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">gamma</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">r</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="n">sigma</span> <span class="o">**</span> <span class="mi">2</span><span class="p">))</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="n">gamma</span><span class="p">)</span>
968
</pre></div>
969

    
970
</div>
971
</div>
972
</div>
973
<div class="text_cell_render border-box-sizing rendered_html">
974
<h2>
975
  Checks / Plots
976
</h2>
977
</div>
978
<div class="text_cell_render border-box-sizing rendered_html">
979
<h3>
980
  For dP(r) / (dx dy)
981
</h3>
982
</div>
983
<div class="cell border-box-sizing code_cell vbox">
984
<div class="input hbox">
985
<div class="prompt input_prompt">In&nbsp;[11]:</div>
986
<div class="input_area box-flex1">
987
<div class="highlight"><pre><span class="c"># Check normalizations</span>
988
<span class="n">r_step</span> <span class="o">=</span> <span class="mf">0.01</span> <span class="c"># deg</span>
989

    
990
<span class="k">for</span> <span class="n">r_max</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">100</span><span class="p">]:</span> <span class="c"># deg</span>
991
    <span class="n">r</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">r_max</span><span class="p">,</span> <span class="n">r_step</span><span class="p">)</span>
992
    <span class="n">pdf_gauss</span> <span class="o">=</span> <span class="n">gauss</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">)</span>
993
    <span class="n">pdf_king_2</span> <span class="o">=</span> <span class="n">king</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">)</span>
994
    <span class="n">pdf_king_3</span> <span class="o">=</span> <span class="n">king</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
995
    <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">pdf_gauss</span><span class="p">,</span> <span class="n">pdf_king_2</span><span class="p">,</span> <span class="n">pdf_king_3</span><span class="p">]:</span>
996
        <span class="n">norm</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">pi</span> <span class="o">*</span> <span class="n">r</span> <span class="o">*</span> <span class="n">r_step</span> <span class="o">*</span> <span class="n">_</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
997
        <span class="k">print</span> <span class="n">norm</span>
998
</pre></div>
999

    
1000
</div>
1001
</div>
1002
<div class="vbox output_wrapper">
1003
<div class="output vbox">
1004
<div class="hbox output_area">
1005
<div class="prompt output_prompt"></div>
1006
<div class="output_subarea output_stream output_stdout">
1007
<pre>0.999787429515
1008
0.67113834294
1009
0.961792040763
1010
0.999791640617
1011
0.996466292832
1012
0.999861093167
1013
</pre>
1014
</div>
1015
</div>
1016
</div>
1017
</div>
1018
</div>
1019
<div class="cell border-box-sizing code_cell vbox">
1020
<div class="input hbox">
1021
<div class="prompt input_prompt">In&nbsp;[12]:</div>
1022
<div class="input_area box-flex1">
1023
<div class="highlight"><pre><span class="c"># Plot PDF dP / (dx dy)</span>
1024
<span class="c"># Note that this only contains 67 % of the events for the King profile (see previous cell)</span>
1025
<span class="n">r_max</span><span class="p">,</span> <span class="n">r_step</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.01</span> <span class="c"># deg</span>
1026
<span class="n">r</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">r_max</span><span class="p">,</span> <span class="n">r_step</span><span class="p">)</span>
1027

    
1028
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">gauss</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;Gauss$(\sigma=0.2)$&#39;</span><span class="p">);</span>
1029
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">king</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.1, \gamma=1.5)$&#39;</span><span class="p">);</span>
1030
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">king</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.2, \gamma=3)$&#39;</span><span class="p">);</span>
1031
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;r (deg)&#39;</span><span class="p">)</span>
1032
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;dP / (dx dy) (deg^-2)&#39;</span><span class="p">)</span>
1033
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">);</span>
1034
</pre></div>
1035

    
1036
</div>
1037
</div>
1038
<div class="vbox output_wrapper">
1039
<div class="output vbox">
1040
<div class="hbox output_area">
1041
<div class="prompt output_prompt"></div>
1042
<div class="output_subarea output_display_data">
1043
<img src="
1044
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8TNf7wPHPZF9lJdQWxJqQRO1boraiFLW2tbVaRH9d
1045
VLVV/dLlW1qU2motUlSVUl9raol9S2KLLYgQRCVIIvt2f3/cGk0jss1ksjzv1+u+xtx755wn0+mZ
1046
M8899xyNoigKQgghyjwjQwcghBCieEiDL4QQ5YQ0+EIIUU5Igy+EEOWENPhCCFFOSIMvhBDlhF4b
1047
/NjYWPr370/Dhg1p1KgRx44d02d1QgghnsFEn4W/99579OjRgw0bNpCRkUFiYqI+qxNCCPEMGn3d
1048
eBUXF4e3tzfh4eH6KF4IIUQB6a2Hf/36dSpWrMjIkSM5c+YMzz//PD/88ANWVlYAaDQafVUthBBl
1049
WmH76XrL4WdkZBASEoKfnx8hISFYW1szffr0bOcoiiKbojBlyhSDx1BSNnkv5L2Q9+LZW1HorcGv
1050
Vq0a1apVo3nz5gD079+fkJAQfVUnhBAiD3pr8CtXrkz16tUJCwsDYPfu3bi7u+urOiGEEHnQ6yid
1051
efPm8dprr5GWlkadOnVYsWKFPqsrtXx9fQ0dQokh78UT8l48Ie+FbuhtlE6eFWs0Rc5HCSFEeVOU
1052
tlOvPXwhyjJHR0cePnxo6DBEGeXg4MCDBw90Wqb08IUoJPkMC33K7fNVlM+dzKUjhBDlhDT4QghR
1053
TkiDL4QQ5YQ0+EIIUU5Igy+EEOWENPhCiGJ3/fp1Q4eQQ1RUFElJSYYOQ6+kwRdCFKvw8PASuRhS
1054
xYoV+e677wwdhl5Jgy9EGbdu3TpatmyJjY0NLi4utGrVih9//NFg8SxevJghQ4bopezNmzfzzTff
1055
MH36dH7++edcz1u7di2zZs1i0KBBrFu3DgATExN69uyJv7+/XmIrERQDMWDVQuhEafgMz5w5U3Fx
1056
cVE2btyoJCQkKIqiKKdOnVJee+01JTU1tdjjOX36tDJ37ly9lB0bG6s0bdpU+7xVq1ZKdHR0jvOu
1057
XLmijSE6Olqxt7dXwsPDtceHDh2ql/gKKrfPV1E+d9LDF6KMiouLY8qUKfz444/069cPa2trALy8
1058
vFi9ejVmZmYATJ8+HTc3NypUqIC7uzubN2/WlmFkZJRt1boRI0bw+eefa59/++23VKtWjQoVKtCg
1059
QQP27t37zP1bt27lhRde0Mvfe+DAARo1aqR97unpyb59+3Kcd/78eW3qxtnZGTc3N4KDg7XHK1as
1060
yNWrV/USo6HJXDpClFFHjx4lNTWVl19++Znnubm5cejQISpXrsz69et5/fXXuXbtGi4uLjnO1Wg0
1061
2tXqLl++zIIFCwgKCqJy5crcvHmTjIyMXPcDnDx5kkmTJhXo7wgPD2fp0qW5Hm/VqhUvv/wyt27d
1062
wt7eXrvf3t6eK1eu5Di/R48e7NixA1AXYYqKisLNzU173NPTk+Dg4Gz7ygpp8IXQE12t4lnY6Xpi
1063
YmJwdnbGyOjJD/k2bdpw8eJFUlNT2bVrF+3bt6d///7a4wMHDmTatGmcOHGCXr165RKPGpCxsTGp
1064
qamcP38eJycnatSoAcDVq1efuh8gKSkpx/KmYWFhTJ48mejoaIKCgvD19aVnz56MGTMGgNq1azNt
1065
2rQ8/97Y2FgsLCy0z83MzEhISMhxnqmpKR4eHgBs27aNZs2a4eXlpT3u4OCgXcejrJGUjhB6oii6
1066
2QrLycmJmJgYsrKytPuOHDnCw4cPcXJy0jbc/v7+eHt74+DggIODA6GhocTExORZvpubG3PmzGHq
1067
1Km4uLgwZMgQbW/5afsBMjMzs5Xx4MEDxowZg7+/P/v27aNTp06sXr1a29gXhK2tbbZJxZKTk3F0
1068
dMz1/NjYWFauXMnq1auz7be0tCQtLa3A9ZcG0sMXooxq3bo15ubmbN68mX79+j31nBs3bvD222+z
1069
d+9eWrdujUajwdvbW9twWllZZRubHhUVRfXq1bXPhwwZwpAhQ3j06BGjR4/m448/xt/fP9f9JibZ
1070
m5wFCxYwbtw4bc88NTUVKyurbOfkN6VTp04dgoKCtPtjYmJo2rTpU1+jKArTp09n2bJl2NjYcOPG
1071
DWrWrAmo1z6e9UVRmkmDL0QZZW9vz5QpU/Dz80NRFLp27Yq1tTVnz54lMTERgMTERDQaDc7OzmRl
1072
ZeHv709oaKi2DC8vL9asWcPXX3/Nn3/+yYEDB2jRogWgpmJu3bpF27ZtMTc3x8LCAkVRct0P6tKn
1073
CQkJ2NjYAPDo0SPthdbz58/j7u6Oqalptr8jvymdDh06MHHiRO3zkJAQvv32WwCuXbtG7dq1temk
1074
efPmMWDAAFJSUjhx4gTJycnaBj8qKoqGDRsW/A0vDQo9vqeIDFi1EDpRWj7Da9asUVq0aKFYWVkp
1075
FStWVFq2bKksXbpUSUtLUxRFUT777DPF0dFRcXZ2VsaPH6/4+voqy5cvVxRFUYKCghR3d3fF1tZW
1076
GTp0qPLqq68qn3/+uaIoinL27FmlRYsWiq2treLo6Kj06tVLiYqKynW/oijK8uXLlT179mhjCw8P
1077
V+bMmaNs2LBBmTNnjpKenl6kv9Xf31/56quvlC+++EJZvXq1dr+3t7cSEhKiKIqiHDx4UDEyMlI0
1078
Go2i0WgUIyMj5datW9pz33zzTSU5OblIcehCbp+vonzuZAEUIQpJPsMFFxsby8yZM/n6668NHcpT
1079
paSkMGnSJL7//ntDh1L2FkCJS4kzZPVCiGJmb2+Ps7Nzvi4KG8K6desYPXq0ocPQG4M2+G7z3Gi1
1080
rBVf7f+KkKgQ6S0JUQ689957bNq0ydBh5BAZGYmDgwP169c3dCh6Y9CUTmpGKgdvHGTblW1svrSZ
1081
5lWbs6rPKixMLPIuQAgDk5SO0Cd9pHRKTA4/JSOFkX+M5GbcTf4Y/AfOVs6GCEuIfJMGX+hTmcvh
1082
/5OFiQVr+q3Bp6YPrZe35sr9nLdECyGEKLwS08P/p8VBi5l+eDqnR5/GzsKumCMTIn+khy/0qUyn
1083
dP7Nb5sfcalxrOm3phijEiL/pMEX+lSmUzr/NrPrTE5FnWL12dV5nyyEECJPJbbBtzK14pdXfuGD
1084
XR8Q/jA87xcIIYR4Jr2mdFxdXalQoQLGxsaYmppy4sSJJxXn82fJ7KOzWX9hPYdGHsLYyFhfoQpR
1085
YJLSEfpU6lI6Go2GwMBATp06la2xL4j3Wr2HscZYUjtCCFFEek/pFLUHZKQx4tvO3/KfwP+QkpGi
1086
o6iEEKL80ev0yBqNhs6dO2NsbMzo0aN56623sh2fOnWq9t++vr74+vo+tZy2NdriVdmLhScXMr71
1087
eD1GLIQoiuvXr1OrVi1Dh1HiRUVFYWdnl2Pu/6cJDAwkMDBQNxUXep7NfLhz546iKIpy7949xdPT
1088
Uzlw4ID2WEGrDv0rVKn4XUUlNjlWpzEKUVh6/t9H79zd3ZX9+/frrLxr164pa9eu1Vl5ZVl6eroy
1089
ZcqUZ56T2+erKJ87vaZ0qlSpAqirwPft27fQeXwA90ruvFTvJb478p2uwhOizHN1dWXPnj3a5+vW
1090
rcPR0ZGDBw8SGhpKhw4ddFbX4sWLGTJkiM7K+6fNmzfzzTffMH36dH7++edczzt9+jQTJkzQSwyF
1091
rbNOnTqYm5vj4uKCv78/ACYmJvTs2VP7vNgU+qsiD4mJiUp8fLyiKIqSkJCgtGnTRtm1a5f2eGGq
1092
vhl7U3H81lG5HX9bZ3EKUVh6/N9HZ1xdXbULjqxcuVJxcnJSjh49qvN6Tp8+rcydO1fn5SqKosTG
1093
xipNmzbVPm/VqpUSHR2d47xZs2Ypffv2VUaMGKGXOJ4mP3UuWbJEuXHjxlMXdxk6dGiur8vt81WU
1094
z53eevh//fUX7du3x8vLi5YtW/LSSy/RtWvXIpVZ3a46wz2HM/PITB1FKUTZpygKixcvZsKECQQE
1095
BNCqVSsgZ+/f1dWVWbNm4enpib29PYMHDyY1NRVQlwv09vamQoUKDBw4kEGDBvH5559rX7t161Ze
1096
eOEFvcR/4MAB7TKIAJ6enuzbty/HeePHj+fll1/WSwy5yU+dZmZm1KhRI8d6vqBmP65evaqv8HLQ
1097
20XbWrVqcfr0aZ2X+17L92i6pClTfadSwbyCzssXoqxZuHAhhw8fZu/evTRu3Fi7X6PRaNd4ffz8
1098
t99+Y9euXZibm9O2bVtWrlzJyJEj6du3LxMmTMDPz48tW7YwePBgPv74Y+1rT548yaRJkwoUV34X
1099
J7916xb29vba/fb29ly58vTJFZUijgrMb0wFqfPkyZOkpqYSHx9PvXr16N27t/aYp6cnwcHBuLm5
1100
FSnu/Cp1i5jXtK9Jl9pd+OnUT7zf6n1DhyNErjRfaPI+KR+UKYVvxBRFYffu3bzwwgt4eHjkef67
1101
775L5cqVAejVqxenT5/m2LFjZGZm8n//938A9O3bV7uQ+WNJSUnZvjxAXeR88uTJREdHExQUhK+v
1102
Lz179mTMmDFA/hcnj42NxcLiyRoZZmZmJCQkPPXcf8fwb/Hx8YwaNYqQkBD69u3LjBkziIyMJDIy
1103
kjZt2uQ7poLU2alTJ/r27Quoi8J36NBB+wXm4OBAWFhYgeorilLX4AOMbz2eQRsG8U6LdzAxKpV/
1104
gigHitJQ64pGo2HRokV89dVXjBo1iuXLlz/z/MeNPYCVlRV37twhKiqKqlWrZjuvevXq2Xq2mZmZ
1105
2Y4/ePCAMWPGsH37diwsLOjTpw+rVq3Czq7gs9/a2tpy//597fPk5GRcXFyeem5evW1/f3/mzZuH
1106
i4sLmzdv5siRI9y9e5d+/foVOK781vnPXwQODg4EBgbSp08fACwtLUlLSyt03QVVKlvLFlVbUNW2
1107
KpsvbaZ/o/6GDkeIEs3FxYU9e/bg4+ODn58fCxcuLNDrq1Spwu3bt7Ptu3nzZrY0xL/z0wsWLGDc
1108
uHHannlqamqOMef5TZ/UqVOHoKAg7f6YmBiaNm361Nfk1dseO3YsxsbqFC19+vRh+vTp2e7/KUxK
1109
51l1rl69mi1btrB+/XoAEhMTs71XcXFxODo6PjNmXSqVDT7AB60+YNbRWdLgC5EPVapU0Tb648eP
1110
5/vvv8/zNY97rq1bt8bY2Jj58+czZswYtm3bxsmTJ7NdpK1cuTIJCQnY2NgA8OjRI+2F1vPnz+Pu
1111
7o6pqWm28vObPunQoQMTJ07UPg8JCeHbb78F4Nq1a9SuXVvb6D6tt33lyhXq1KmDkZGRtrF/LCIi
1112
QnsRuyAx/dPT6nwcl6urqzaFlZSURHR0dLb3LSoqioYNGxaovqIosbNl5qVPgz7cTbjLsVvHDB2K
1113
EKVC9erV2bt3Lxs2bGDSpEl59oYfX9Q1NTXl999/Z/ny5Tg4OLBmzRpeeuklzMzMtOf6+Phku89m
1114
7NixBAQEsHHjRnbv3s306dMLHbe1tTUTJ07k66+/5ssvv2TixIlUqlQJgAEDBmgHh8yfP5+ffvqJ
1115
wMBAvvjiC+Lj4wHo3bs3AQEBTy27efPmhY7rWXU+jqtdu3ZERUUxZ84cPvvsM9atW5ftl87p06dp
1116
27ZtkWIoiBK7AEp+/HDsB47cOsKv/X/VUVRC5F95ni2zZcuW+Pn5MXz4cEC9sDpz5ky+/vprA0eW
1117
U1paGsePH6d9+/bZ9gcFBXHv3j169OhhkLhSUlKYNGlSrr+2St1smfo2wmsEAdcCiE6MNnQoQpRp
1118
Bw4c4O7du2RkZLBq1SpCQ0N58cUXtcft7e1xdnYmJibGgFE+3aZNm2jTpk2O/RcuXMDHx8cAEanW
1119
rVvH6NGji7XOUt3g21nY8XL9l/E/U8y3JwtRzly+fBkvLy8cHByYPXs2GzZsyDFS5r333mPTpk0G
1120
ijB3gwYNypG7Bxg2bBjW1tYGiAgiIyNxcHCgfv36xVpvqU7pABy+eZg3t7zJxXEX88xJCqFL5Tml
1121
I/RPUjpP0aZ6G4w0RhyOPGzoUIQQokQr9Q2+RqNhVNNRLA3JfeysEEKIMtDgAwxtMpQ/Lv1BbEqs
1122
oUMRQogSq0w0+BWtK9LNrRtrz601dChCCFFilYkGH2CU9yiWhSwzdBhCCFFilZkGv1PtTjxIfsDp
1123
u7qfklkIIcqCMtPgG2mMeL3J6/x8Nvflz4QQojwrMw0+qBdv155bS0ZWhqFDEUKIEqdMNfj1netT
1124
vUJ19oTvyftkIYQoZ545PXJ6ejoBAQEcOHCAiIgINBoNNWvWpEOHDnTr1u2pazQa2tAmQ/n57M90
1125
c+tm6FCEKHeuX79OrVq1DB2GQUVFRWFnZ5dj/v+SINce/ldffUXz5s3ZunUrDRo04I033mD48OHU
1126
r1+f//3vfzRr1qxEzow32GMwW8O2kpD29CXQhBAqDw8PDhw4oLPywsPDOXZMpiuvWLEi3333naHD
1127
eKpc59LZsmULvXr1ynV+mqysLLZu3ZptQd4CVazHeUh6/dKLAY0GMMxzmF7KFwJKx1w6rq6uLF++
1128
nE6dOgHqDI1+fn788ccfOaYLLqqPP/5YuzCJrm3evJkLFy5gZGRE1apVGTp0aI5z1q5dS1RUFCdO
1129
nKBv374MHjxYL7H80x9//EFCQgLXrl3D2dkZPz8/QF24/OLFiwwbVvg2SB9z6aAYiD6r/jX0V6Wz
1130
f2e9lS+Eouj3M6wrrq6uyp49exRFUZSVK1cqTk5OytGjR3Vez+nTp5W5c+fqvFxFUZTY2FiladOm
1131
2uetWrVSoqOjs51z5coVbf3R0dGKvb29Eh4erpd4Hnv48KFibm6uJCcnK1lZWYqjo6MSERGhPT50
1132
6NAilZ/b56son7tcUzoZGRksWrSIyZMnc/hw9onJSmIq55961etF8J1gbsffzvtkIco4RVFYvHgx
1133
EyZMICAgQLukn6urK3v2PBng4OrqyqxZs/D09MTe3p7BgweTmpoKqMsKent7U6FCBQYOHMigQYP4
1134
/PPPta/dunVrtqX7dOnAgQPa5RIBPD092bdvX7Zzzp8/r02jODs74+bmRnBwsF7iecze3p7g4GAs
1135
LCzQaDRkZGRk63lXrFiRq1ev6jWGgsr1quvo0aNJTk6mefPmvPvuu/j4+GhXZtm4cSOTJ08utiAL
1136
ytLUkn4N+7H23Fo+avuRocMRwqAWLlzI4cOH2bt3L40bN9buf7yE4T+f//bbb+zatQtzc3Patm3L
1137
ypUrGTlyJH379mXChAn4+fmxZcsWBg8ezMcff6x97cmTJ5k0aVKB4srvguG3bt3C3t5eu9/e3p4r
1138
V65kO7dHjx7s2LEDUL/goqKisi2yruuYHnN3dwfg0KFD+Pr64urqqj3m6elJcHBwoeLQl1wb/BMn
1139
TnDu3DkA3nnnHfz8/OjXrx9r15aO+WpebfwqEwImSIMvDEdX6zMU4TqBoijs3r2bF154AQ8PjzzP
1140
f/fdd6lcuTIAvXr14vTp0xw7dozMzEz+7//+D4C+ffvSokWLbK9LSkrKcb0vLCyMyZMnEx0dTVBQ
1141
EL6+vvTs2VO7qHd+FwyPjY3FwsJC+9zMzIyEhOyDMkxNTbV/37Zt22jWrBleXl45yoqPj2fUqFGE
1142
hITQt29fZsyYQWRkJJGRkbRp06ZQi5j//vvv/Pbbb8yaNSvbfgcHB8LCwgpUlr7lmtJJT0/X/tvU
1143
1JSlS5fi6elJp06dcrzZJZFPTR/uJtzlcsxlQ4ciyitF0c1WBBqNhkWLFnH58mVGjRqV5/mPG3sA
1144
KysrEhISiIqKomrVqtnOq169erb0RWZmZrbjDx48YMyYMfj7+7Nv3z46derE6tWrtY19Qdja2mar
1145
Kzk5GUdHx6eeGxsby8qVK1m9evVTj/v7+zNv3jyuXr1K27ZtOXLkCCdPnnzqEoj51a9fP5YuXUr3
1146
7t2JiIjQ7re0tCQtLa3Q5epDrj38559/nh07dtC9e3ftvilTplC1alXGjh1bLMEVhbGRMQPdB/JL
1147
6C9M9Z1q6HCEMBgXFxf27NmDj48Pfn5+LFy4sECvr1KlCrdvZ78edvPmzWypin/fk7NgwQLGjRun
1148
7ZmnpqbmGJee3/RJnTp1CAoK0u6PiYmhadOmOc5XFIXp06ezbNkybGxsuHHjBjVr1sx2ztixY7XL
1149
Hfbp04fp06fj6+tb4JhA/SXxzTffcPjwYWxsbKhUqRIbNmxgwoQJAMTFxeX6xWQouTb4a9aseer+
1150
UaNG5aunUBIM8RjCsM3DmOIzRZY/FOValSpVtI3++PHjtdfjnuVxr7p169YYGxszf/58xowZw7Zt
1151
2zh58mS2i7SVK1cmISEBGxsbAB49eqS90Hr+/Hnc3d0xNTXNVn5+0ycdOnRg4sSJ2uchISHa4Z/X
1152
rl2jdu3aaDQa5s2bx4ABA0hJSeHEiRMkJydTs2ZNrly5Qp06dTAyMsqxtm1ERIT2InZBYgIwNjbW
1153
flkoikJkZCRNmjTRHo+KiqJhw4b5Kqu4FOhW2bfffpslS5YUqILMzEyaNWtGtWrV+N///leg1xZV
1154
i6otyMjK4NTdUzStkrNHIER5Ur16dfbu3UuHDh20I0ue5fFFXVNTU37//XdGjRrFp59+Svfu3Xnp
1155
pZcwMzPTnuvj48OJEye0XwJjx45ly5YtXLhwgVu3bjF9+vRCx21tbc3EiRP5+uuvycrKYuLEiVSq
1156
VAmAAQMGsHz5chITE/nggw+0X1IajYabN28C0Lt3b2bPns2LL76Yo+zmzZsXOq4XX3yR8PBw5s2b
1157
x40bN/jss8/o2rWr9vjp06dLXOe4QIuYe3t7c+rUqQJV8P333xMcHMyjR4/YsmXLk4qL6aaVz/Z+
1158
RlpmGjO6zNB7XaJ8KQ03XulLy5Yt8fPzY/jw4YCaO585c2aJHLKdlpbG8ePHc9xoFhQUxL179+jR
1159
o4fO60xJSWHSpEn5+iWVG4MvYu7i4lKgwm/dusX27dsZNWqUwf7HGOIxhHWh68hSsgxSvxBlwYED
1160
B7h79y4ZGRmsWrWK0NDQbD1me3t7nJ2diYmJMWCUT7dp06anXpS9cOECPj4+eqlz3bp1jB49Wi9l
1161
F0WBUjo7d+4sUOEffPABM2bMID4+/qnHp06dqv23r69vtosnuuJRyQMHCwcO3TxEh5oddF6+EOXB
1162
5cuXGThwIImJidSpU4cNGzbk6AC+9957LFu2jLfeestAUT7doEGDnrq/KNMePEtkZCQODg7Ur19f
1163
J+UFBgYSGBiok7LyTOmcO3cu280a+bV161Z27NjBggULCAwMZNasWdly+BqNhhdfVLC1BTs7qFAB
1164
ataERo3A3R0qV9bdMOZpB6dxM/4mP/b8UTcFCkH5TukI/dNHSueZDf6ePXuYMmUKhw4dKnDBkyZN
1165
4ueff8bExISUlBTi4+N55ZVX8Pf31wa9fbtCfDzEx0NsLFy/DhcuqJuREXTpAl27qo//GB5cYNcf
1166
XqfFshbcGX8HU2PTvF8gRD5Igy/0qVgb/NWrVzNr1iwCAgKoWLFioQp/bP/+/cycOTNHD/9ZQV+/
1167
Dn/+CQEBsGcPNGsGI0dC375gaVnwGFota8UXvl/IPPlCZ6TBF/pUrBdt33jjDTZu3Fjkxv6xgo6D
1168
r1UL3n4bNmyAqCgYNQpWrYJq1eCjj+Du3YLVP8h9EL+e/7VgLxJCiDIk1x7+tGnTCAgIYPv27VgW
1169
pkudV8WF/Ja6cQO+/x5+/hleew0mToTq1fN+3e342zT+sTFRH0ZhbmJeiIiFyE56+EKfirWH/+mn
1170
n/LGG29kmxmuJKhZE374Qc3zW1qClxdMmQJJSc9+XdUKVWns0phd13YVT6BCCFHC5DlKZ/fu3XTu
1171
3Fn3Feuod3TzppriOXYMZs6E/v1zH92z8ORCDkceZk2/p08bIURBODo68vDhQ0OHIcooBwcHHjx4
1172
kGO/3kbp6JOufw4HBsI770DdurB4Mfx953U29xLvUW9ePe58eAcr05K3wLAQQuSlKG1nnjdebdy4
1173
MccFVzs7Oxo3bqydz6Ik8PWF4GCYOhU8PWHBAujXL/s5lawr0aJqC7aFbWOA+wBDhCmEEAaTZw+/
1174
Z8+eHD16lI4dOwLqXV9Nmzbl+vXr/Oc//yn03Wr6vOB19CgMHw7t28P8+dmHcf506ie2X9nOhoEb
1175
9FK3EELok17n0klPT+fixYts3LiRjRs3cuHCBTQaDcePH9fbCvVF1bo1hIRAcjK0aQPXrj051rdB
1176
X/4M/5P41KdP9yCEEGVVng1+ZGRktjkzKlWqRGRkJE5OTtmmRy1pbGxgzRp48031C+DxPV8Olg50
1177
qNmBLZe3PLsAIYQoY/LM4Xfs2JGePXsycOBAFEVh48aN+Pr6kpiYmG1h4ZJIo1Ev5D7/vDp6JywM
1178
xo9XZ9Bce24trzd53dAhCiFEsckzh5+VlcXvv//O4cOHAWjbti2vvPJKkVeQKu6bVm7ehJdegrZt
1179
YdqsBGrOrUr4u+E4WTkVWwxCCFFUeh+WGRERwZUrV+jSpQtJSUlkZmZia2tbqAq1FRvgLsX4eBg4
1180
UO35Ww4bSPd6XXjr+ZI1lasQQjyLXi/aLlmyhAEDBmhXm7916xZ9+vQpVGWGVqECbN2qzscTum4w
1181
q0+vM3RIQghRbPJs8BcsWMChQ4eoUKECAPXq1ePevXt6D0xfTExgyRLoWa8Hh8JDOHMtytAhCSFE
1182
scizwTc3N8fc/MlkYxkZGUXO3xuaRgPff2eBp3lvOr37GxERho5ICCH0L88G38fHh//+978kJSXx
1183
559/MmDAAHr16lUcsemVRgP/HTKYCm3W0bEj0ugLIcq8PC/aZmZmsnz5cgICAgDo1q0bo0aNKnWj
1184
dJ4mPTOd575/jnfMTrLqB1f27VNn4xRCiJJKJk8rgjFbx+Bq74pl8CfMnatOwpaf+fWFEMIQ9DJ5
1185
2rMWLtdoNJw9e7ZQFZY0QzyG8H87/o+z731CZiZ07AiHDhVtDV0hhCiJcm3wH68/u3DhQgCGDh2K
1186
oiisWVO25pJvX7M9D1Mecu6vc4wf35iEBOjWDfbvhxJ+I7EQQhRInikdLy8vTp8+nW2ft7c3p06d
1187
KlrFJSSlAzDxz4kYGxkzrdM0FAU++ABOnlQXULe2NnR0QgjxhF5vvFIUhUOHDmmfHz58uMQ01Lry
1188
WuPX+OVnQJJ0AAAgAElEQVTcL2QpWeqQze/BzU2dfyctzdDRCSGEbuTZww8ODmbkyJHExcUBYG9v
1189
z4oVK2jatGnRKi5BPXxFUfD40YPFLy2mXY12AGRkqAuoODjAypW5L5sohBDFqVhG6cTGxgLobIbM
1190
ktTgA3xz8Btuxd9iYc+F2n2JifDCC9C1K3z1lQGDE0KIv+klpbNy5UoyMjK0z+3t7bM19mlpaaxY
1191
saJQlZZEQzyG8NuF30jPTNfus7ZW59H/5RdYutSAwQkhhA7kOkonISGB5s2b06BBA5o1a0aVKlVQ
1192
FIW7d+8SFBTEpUuXeOutsjPTZC2HWtRzqkfAtQB61uup3V+pEuzYAR06qJOude9uwCCFEKIInpnS
1193
URSFw4cPc+jQIW7evAlAzZo1adeuHW3atCnS3bYlLaUDsPDkQg7dPMTaV9bmOHb0KLz8MuzZA8+4
1194
RUEIIfRK7rTVkZikGNzmuhH5QSS25jnn+1+7Fj77DI4fV3v+QghR3PQ6LLM8cbZyxsfVh40XNz71
1195
+KuvwrBh0KcPpKQUc3BCCFFE0uD/y7Amw1h1ZlWux6dMUefaefNNKGE/UIQQ4pn01uCnpKTQsmVL
1196
vLy8aNSoEZ9++qm+qtKpl+q9xLm/znEj9sZTjxsZqePyw8JgxozijU0IIYoizxz++fPnOXDgABER
1197
EWg0GlxdXWnfvj3u7u55Fp6UlISVlRUZGRm0a9eOmTNn0q6demNTSczhP+a3zY+qtlX5rMNnuZ5z
1198
6xa0bAnLl8OLLxZjcEKIck0vOfyff/6ZFi1aMGHCBO7evUvt2rVxdXUlKiqKCRMm0Lx5c1avXv3M
1199
wq2srAB1zH5mZiaOjo6FCrK4DfMchv9Z/2e+qdWqwfr1ak4/LKwYgxNCiELKdRz+w4cP2bNnD7a2
1200
OUerAMTHx7Ny5cpnFp6VlUXTpk25du0aY8eOpVGjRtmOT506VftvX19ffH198x24PrWs2hJFUThx
1201
+wQtq7XM9by2beG//1WHax4/ri6SLoQQuhQYGEhgYKBOysozpXP//n2cnJyKVElcXBzdunVj+vTp
1202
2ka9JKd0AL4+8DVRCVEs6LEgz3P9/ODOHfj9dzXHL4QQ+qLXYZktW7ZkwIABbN++vdCV2NnZ0bNn
1203
T4KCggr1ekN4vcnr/Br6K6kZqXmeO2cO/PUXTJ9eDIEJIUQh5dngh4WF8dZbb+Hv74+bmxuffvop
1204
YflIWsfExGgnXEtOTubPP//E29u76BEXE1d7Vxq7NOZ/Yf/L81wzM9iwARYsgF27iiE4IYQohALd
1205
abt3715ef/11EhMT8fLyYtq0abRp0+ap5547d47hw4eTlZVFVlYWQ4cO5aOPPnpScQlP6QD8fOZn
1206
1oauZcdrO/J1/sGD6hz6x45BrVp6Dk4IUS7pdWqFmJgY1qxZg7+/Py4uLowaNYpevXpx5swZ+vfv
1207
T0REROEqLgUNflJ6EtW+r8aZMWeobpe/lc1/+EEdp3/kCFha6jc+IUT5o9ccfps2bYiLi+OPP/5g
1208
+/bt9OvXD1NTU5o1a8aYMWMKVWlpYWVqxWCPwaw4nf9poN99F+rVUx+FEKIkybOHryhKkWbFzLXi
1209
UtDDBwi+E0z/3/pz7d1rGGnyNwTn0SNo0QImToSRI/UcoBCiXClK25nrOPxevXppCweyVaDRaNiy
1210
ZUuhKixtmlZpip25HXuv76Vz7c75eo2tLWzcCD4+4O0NXl56DlIIIfIh1wb/ww8/BGDTpk3cvXuX
1211
119/HUVR+OWXX3BxcSm2AA1No9HwpvebLD+1PN8NPkCjRjB3rnoRNzgY7Oz0GKQQQuRDnimd559/
1212
nuDg4Dz3FbjiUpLSAXiQ/IDaP9Qm/L1wHC0LNj3EuHHqGP3ffpOF0IUQRafXi7ZJSUlcu3ZN+zw8
1213
PJykpKRCVVZaOVo60r1ud1afffbcQU/z/fcQEQHz5uk+LiGEKIg8e/g7d+7k7bffptbfA8sjIiJY
1214
smQJ3bp1K1rFpaiHDxAYEci47eMIHRta4IvY169Dq1awZYs6w6YQQhSW3pc4TElJ4dKlS2g0GurX
1215
r4+FhUWhKstWsUaDsmIFWFiAlZW6VayoTkPp6Fji8h+KouC+0J0fe/6Ij6tPgV//xx/qUM2QECji
1216
1ERCiHKs9K5pO3w4JCerW2IiREerE80nJ6u3qjZpAp6e6tamDdjbGyJUrXnH53E48jDr+q8r1Os/
1217
/FCdSnnLlhL3fSaEKCVKb4OfW9WJiXDtGpw9C2fOqN3iEyegfn3w9YXu3dUxjya5DjLSi7iUOFx/
1218
cOXiuItUtqlc4Nenp0OHDurInb8HQQkhRIGUvQb/aVJT4eRJ2LsXtm6F8HDo3VttPbt2LbbG/+3/
1219
vU1Nu5rPXA3rWW7cUG/K2rwZWrfWcXBCiDJPr6N0li9fnu15RkZGtoVLio25ObRrB//5j9rbDwlR
1220
Uz1ffAE1a8KkSXD1qt7DGNtsLIuDF5OZlVmo19esCUuXwuDB8OCBjoMTQohnyLPB3717Nz169ODO
1221
nTuEhobSunVrHj16VByxPVuNGvDee+pSUwEB6i+ANm2gZ0/Yswf09MPFu4o3VStUZduVbYUu4/EP
1222
k+HD9RamEELkkK+Uzrp163jnnXewtrZmzZo12oXIi1SxPoZlpqTA6tXq4HczM/j4Yxg4EIyNdVqN
1223
/xl/1p5by87Xdxa6jLQ0aN8eBg2C8eN1GJwQokzTaw4/LCyMESNG4OHhwcWLF3F3d2fWrFlYW1sX
1224
qkJtxfoch5+VBTt3wldfQVycmgYaOFBn6w+mZKRQc05NAocH0rBiw0KXExGh5vO3bFHH6QshRF70
1225
msPv3bs3X375JUuWLGH//v3UrVuX5s2bF6qyYmNkBD16qJPSf/89zJ6t5vt37NBJDsXCxIIxzcbw
1226
w/EfilSOqyssWaLm8x8+LHJYQgjxTHn28OPi4rD718xfly9fpn79+kWruDjvtFUU9c6njz9Wr5rO
1227
mKF+ARTBXwl/0WBBA67+31WcrIp2J9X776u9/U2bZHy+EOLZ9JLS2bhxY7YpBB6f9nhfv379ClWh
1228
tmJDTK2Qng6LF6upnldegf/+FxwcCl3cyD9GUtexLpPaTypSWGlp0LYtvPaa2vgLIURu9NLgjxgx
1229
Ao1Gw7179zhy5AgvvPACAPv27aNNmzZs3bq18BFj4Ll0HjyAyZPVLvW0aTBsWKHy+2funqHH2h5c
1230
f+86ZsZmRQopPFzN42/bBiU9YyaEMBy9XrTt0qUL/v7+VKlSBYCoqCiGDx9OQEBAoSrUVlwSJk8L
1231
CgI/P3U+n2XL1LUJC6iTfydGeo3k9SavFzmcjRvho4/UWwwMPIuEEKKE0utF28jISCpXfjKNgIuL
1232
Czdv3ixUZSVOs2Zw9Kia3mnTBqZPV9M+BfBBqw+YfWy2Tr68XnlFvY3gzTdlfL4QQvfybPA7d+5M
1233
t27dWLlyJStWrKBHjx506dKlOGIrHsbG6g1cQUGwb586f3FoaL5f3qNuDxLSEth/Y79Owpk5U72A
1234
O3++TooTQgitfC1ivmnTJg4ePAhAhw4d6Nu3b9ErLgkpnX9TFPjpJ/jkEzW38uGH+bppa3nIcn67
1235
8FuRbsT6p2vX1Hl2tm9Xf4QIIcRjesnhK4qS50If+Tkn14pLYoP/WEQEjBgBGRng7w+1az/z9LTM
1236
NOrMrcPmQZt5/rnndRLCb7+p3zvBwZLPF0I8oZccvq+vLzNmzCAsLCzHscuXL/Ptt9/i41PwhUBK
1237
BVdXdVbOfv3UFM/qZy9taGZsxoetP2TaoWk6C2HAAHUW6FGjJJ8vhNCNXHv4qamprFmzhl9++YXQ
1238
0FBsbW1RFIWEhAQ8PDx47bXXePXVVzEzK9xwxBLdw/+n06fh1VfB2xsWLoR/3YT2WGJaIrV+qMX+
1239
EfuLNN3CP6WkqOPzR46Ed97RSZFCiFJO7/PhZ2ZmEhMTA4CzszPGOpiMrNQ0+ABJSWo+PyAA1q3L
1240
daD81we+5uqDq6zss1JnVT/O58v4fCEElJcFUEqCDRvUcfuTJqkje/51/eJh8kPc5rkR/HYwrvau
1241
Oqt240aYMEEdn1+EG4OFEGWAXsfhF1ZkZCQdO3bE3d0dDw8P5s6dq6+qik///nDsGKxdC3365Jjx
1242
zMHSgbeavsV3h7/TabWvvKLOoT9ihOTzhRCFp7ce/t27d7l79y5eXl4kJCTw/PPPs3nzZho2VPPb
1243
pbKH/1haGkycqE7I9ttv2cZOxiTFUH9+fZ338h/Pnz9woKyHK0R5ppcefrdu3Zg9ezaXLl0qVMGV
1244
K1fGy8sLABsbGxo2bMidO3cKVVaJY2YGc+aos252765ezP37P4CzlTPjmo/jy/1f6rzK9evhu+/g
1245
0CGdFi2EKCdy7eFHRUWxc+dOdu3axeXLl2nZsiXdu3enc+fOBV78JCIiAh8fH86fP4+NjY1asUbD
1246
lClTtOf4+vri6+tb+L/EUMLC1DGUjRurM3FaWxObEkvdeXU5/MZh6jkVfH6eZ9m2DcaMUcfnV6qk
1247
06KFECVQYGAggYGB2udffPGF/kfpHD9+nB07drB3714sLCzo1q0bEydOzLOChIQEfH19mTx5Mn36
1248
9HlScWlO6fxbUpLaCp86Bb//DnXr8s3Bbwi9F8raV9bqvLrJk9UpgAICdL56oxCihCv2UTrR0dEE
1249
BATw2muvPfO89PR0XnrpJbp37877/5rovUw1+KCmdBYtgilTYNkyEl58Abe5bvw59E8auzTWaVWZ
1250
mdC1qzrf21df6bRoIUQJVyKHZSqKwvDhw3FycmL27Nk5Ky5rDf5jx4+rKZ4RI5jdtQIHbh9m06BN
1251
Oq/m3j14/nn1O6ZnT50XL4QooUpkg3/o0CE6dOhAkyZNtPPtTJs2jRdffFGtuKw2+AB//QUDB5Jp
1252
ZYlXu1B+HLqOdjXa6byaI0egb181vZPHdD9CiDKiRDb4eVZclht8UOfVnziRRxvW8vYbFVkz9SxG
1253
Gt3f9jB/vrp2y5EjYGWl8+KFECWMXoZlHjt2DE9PT6ytrWndujUXLlwodIDlkqkpzJ6N9bRZLPz+
1254
ModnvqeXasaNAw8P9ZpxWf7+FEIUXa4N/rhx45g5cyb3799n/PjxfPDBB8UZV5lh9PrrRPy6mJrT
1255
fyR9wgfqlMs6pNGoo0FPn1ZvBxBCiNzkmtLx9vbm1KlTuT4vcsVlPaXzL28s783nP16glkMtdQI2
1256
Jyedln/1qjqz5saN0E73lwuEECVEUdpOk9wOxMXF8fvvv2sL/udzjUZDv379ChdtOfVZ39m0vNec
1257
8LtdsWneHDZtAk9PnZXv5garVsGgQXDiBFStqrOihRBlRK49/BEjRmRbzerfq1utWLGiaBWXsx4+
1258
wKd7PuVG7A3WpvWCd9+FefNg8GCd1jFtmjrFz/79YG6u06KFECWAjNIpJRLTEnFf6M6y3svo/Kii
1259
OqbylVfUVtok1x9bBaIo6m0A9vawdGmOGZyFEKWcXhr8WbNmPXO92vHjxxeqQm3F5bDBB/jf5f/x
1260
YcCHnB17Fou4xCc9fB3m9RMS1EVTRo+WlbKEKGv0Mizz0aNHPHr0iKCgIH788Udu377NrVu3WLRo
1261
ESEhIYUOtrzrVb8X7pXc1TnznZxgxw51+cRmzdS5eHTAxkZN63z9NezZo5MihRBlQJ4pnfbt27N9
1262
+3ZsbW0B9YugR48eHDx4sGgVl9MePsDNuJs0XdyUY6OO4ebopu5cv14dVP/99zB0qE7q2bdP/QFx
1263
5AjUqaOTIoUQBqbXFa/u3buHqamp9rmpqSn37t0rVGVCVcOuBp+0+4TRW0eTpWSpOwcOVFvoL79U
1264
L+impxe5no4dYepU6NUL4uOLXJwQopTLs8EfNmwYLVq0YOrUqUyZMoWWLVsyfPjw4oitTHu/1fsk
1265
piWyKGjRk50eHnDyJFy/Di+8AFFRRa5n7Fjw8VF7+jq+50sIUcrka5ROcHAwBw8eRKPR0KFDB7y9
1266
vYtecTlO6Tx2KeYS7X5qx4m3TlDb4R+zn2VlqQn4xYvh11+LfCdVero6o2aDBlAWlhYWojyTYZml
1267
2Kwjs9gStoV9w/flnFxtxw515fJJk9Q0TxHGWMbGqvPnjxunbkKI0kmvOXyhX++3ep/MrEzmHZ+X
1268
82D37nDsGPj7qzmZR48KXY+9PWzdqv5w2LmzCAELIUotafANzNjImBUvr+CrA18Rei805wm1asHh
1269
w2BnB82bw/nzha6rdm3YsAGGDYMzZ4oQtBCiVJIGvwSo61SXGV1mMGjDIJLSk3KeYGEBS5bAp5+C
1270
ry+sXl3outq2VefQf+kliIwsfMxCiNJHcvglhKIoDN00FAsTC5b1Xpb7iWfPqnMn+PjADz+ApWWh
1271
6ps5U51s7dAh9ceDEKJ0kBx+GaDRaPix548cuHGAX879kvuJTZpAUJCaz2/dGsLCClXfhx+q3xmv
1272
vAJpaYUMWghRqkiDX4LYmtuyfsB63t35LlfuX3nGibawdq26zFXbtoVK8Wg06g8EW1sYPlwdCSqE
1273
KNskpVMCLQlewpxjczg26hgVzCs8++QzZ9S7dNu2VadbtrYuUF3JydCtG3h5qV8AMrumECWbpHTK
1274
mLeffxsfVx+Gbhr6ZOqF3Hh6QnAwZGaqE7CdPl2guiwtYcsWdf78b74pQtBCiBJPGvwS6ocXf+Bh
1275
8kOmBk7N+2QbG/UK7GefQZcuMHt2gXI09vbq2Pzly9Wbe4UQZZOkdEqwe4n3aL60OTO7zGSA+4D8
1276
vejaNXjtNXBwgBUroHLlfNd39ao66vPbb9UihBAlj6R0yqhK1pXYPGgzftv9OHzzcP5eVKcOHDyo
1277
pne8vNS1c/PJzQ127VJH8GzeXMighRAllvTwS4FdV3cxbPMwAocH0rBiw/y/8MgRdW79x2P2/17T
1278
IC/BweqsDmvWqBkiIUTJIT38Mq6bWzdmdJlB9zXdufPoTv5f2KaNehHXyEgdvx8YmK+XPf88/P67
1279
mtbZu7dwMQshSh7p4Zci0w5OY935dewbvg9HS8eCvXjbNnWR28eLpltZ5fmS/fuhf3/47Tc1ty+E
1280
MDzp4ZcTn7T7hM61O9NtdTdiU2IL9uKePdVpGWJi1KGcBw7k+RIfH3XlxQED1MZfCFG6SQ+/lFEU
1281
hfd3vc/xW8cJGBqQ941ZT/PHH+DnB336wPTpeeb29+6FQYPUxr9jx0IGLoTQiRLbw3/jjTdwcXGh
1282
cePG+qymXNFoNMzpNoemVZrSfU13HqUWYo78l1+G0FBISVGXVdy+/Zmnv/CCmtYZNEjm0heiNNNr
1283
gz9y5Eh2SguhcxqNhvk95tO4UmM6/9yZ+0n3C16Ig4N6p9WyZepqWoMHw927uZ7u66v+MBg+vEAj
1284
PYUQJYheG/z27dvj4OCgzyrKLSONET/2/JGOrh3psLIDt+NvF66gLl3U3H6tWupInsWLc71Lt3Vr
1285
ddXFsWOLNCW/EMJATAxZ+dSpU7X/9vX1xVeGghSIRqNheufpOFo60m5FOwJeD6CuU92CF2RlpY7c
1286
efVVtTVfvhx+/FEdn/kvTZvCnj3qOP2YGHj/fR38IUKIXAUGBhKYzyHVedH7RduIiAh69erFuXPn
1287
slcsF211annIcibvm8z6/utpX7N94QvKylLX0P3kE+jXD776Cpyccpx28yZ07Qp9+6qTrsksm0IU
1288
jxJ70VYUnzebvsnKl1fyyvpXWHV6VeELMjKCESPg4kUwNoaGDdU1ETMysp1Wo4a6WtbevfDmm5Ce
1289
XrT4hRD6Jw1+GdLNrRuBIwL58sCXfLrnUzKzMgtfmIODOr/+3r3qVVpvbwgIyHaKs7Oa3rl3D3r0
1290
gLi4Iv4BQgi90muDP2TIENq0aUNYWBjVq1dnxYoV+qxOAI0qNuLYm8c4GnmUHmt7EJ0YXbQCPTxg
1291
92748ksYN05N3oeGag/b2KgTrdWvr67BcuNGEf8AIYTeyI1XZVRGVgaT905m7bm1/Nr/V1pXb130
1292
QtPSYNEi+O9/oVcvmDIFqlcHQFHU+dlmzICNG6FVq6JXJ4TISXL4IgcTIxOmd57O/B7zeXndy8w4
1293
PKNoKR4AMzN1zP7ly1Cpkjr98oQJcP8+Go06YmfRIujdG1au1MmfIYTQIenhlwMRsREM3TQUY40x
1294
q/qsoqZ9Td0UHBWljuJZv15N93zwAdjbc/GiejNvjx4wcyaYGHTwrxBli/TwxTO52rsSODyQ7m7d
1295
aba0GatOr9LNl22VKrBwIZw4AZGR6goqX31Fw+fiOH4cLl2Czp2feQOvEKIYSYNfThgbGfNxu4/5
1296
c+ifzDk+h26ruxH+MFw3hdeuDT/9BEePwpUrUKcODrMms21VDD4+6v1bOrpvRAhRBNLglzNelb04
1297
MeoEnWt3psXSFsw4PIP0TB0Noq9bV71p6/hxuHcP44b1+OLReNZ+F8ngweoNWgVYW10IoWOSwy/H
1298
rj24xrjt47gRd4M53ebQza2bbiu4dQtmz4YVK0js+BJ+1z8i0r4x/v5QrZpuqxKivChK2ykNfjmn
1299
KApbw7YyPmA8DZwbMLPLTOo719dtJbGxsGgRyty5XLdy5z8x79FvWQ/69ZcfmEIUlDT4oshSM1KZ
1300
e3wu3x35jpfrv8wUnylUt6uu20rS0mD9ehK+nk10+COOePrRc/1w7GvJjKpC5JeM0hFFZm5izkdt
1301
PyLsnTAqWVfCa7EX7+98v2CLpufFzAxefx2bi0G4bPuJenEnoE5tbnYbBcHBuqtHCPFU0uCLbBws
1302
Hfim0zec9zuPRqPBY6EHY7eNJSI2QneVaDRYdWlH87C1hP52ifUna3HPpz/pTZqqwzxlUh4h9EJS
1303
OuKZ7iXeY86xOSwOXkyX2l0Y33o8Laq20GkdCQnwxZQsIpbv4du6S6l1JQBNz57q8lqdOqmzdgoh
1304
AMnhi2IQlxLH8lPLmXt8LlUrVOXdFu/St2FfzIzNdFbH6dMwejQ4E8Mi33VU37tKvZt3yBB1cRYv
1305
L5l4X5R70uCLYpORlcHmS5tZeHIh56PPM8JrBG81fQs3RzedlJ+Zqd7D9Z//QM+eMH3YBZwD1sLa
1306
tWBurq69O2AANGqkk/qEKG2kwRcGEXY/jCXBS/A/40995/oM9xzOgEYDsLOwK3LZcXHqND0rV6pT
1307
9Lz/noL1uWPqvD0bNkCFCmrD368fNG4sPX9RbkiDLwwqLTONHVd24H/Wnz3he+hcuzOD3AfRs15P
1308
rEytilT21avw+eewfz9MngyjRoGZSZZ6N++GDeriLAB9+qjTdLZtC6amOvirhCiZpMEXJcaD5Ads
1309
uriJX8//yonbJ+jm1o0+9fvQo26PIvX8Q0Lg008hLAwmTVKv55qZoU7Ef+6c2vBv3ap+Q3TpouaD
1310
unZVJ3gTogyRBl+USNGJ0Wy5vIXNlzezP2I/Lau1pIdbD3rU7UE9p3poCpGGOXxYTfVcuAAffwxv
1311
vAGWlv84ISoKduyA7dvV9Rdr1oRu3dRpO9u1+9fJQpQ+0uCLEi8hLYE/r/3Jjqs72H5lO2bGZnSt
1312
05VOtTrRsVZHnK2cC1Te8ePqZGzHjsGYMep0/JUq/eukjAx16uZdu9TG//RpaN4cOnYEHx9o2RIs
1313
LHT3RwpRDKTBF6WKoiiE3gtld/hudl/fzcEbB6ntUBsfVx861OhA+5rtqWT979b76S5fVudn+/VX
1314
6NsX/PygWbNcTn70CA4cUOdq3r9f/Znw/PNqz79tW2jTBuztdfZ3CqEP0uCLUi0tM43gO8EcuHGA
1315
/Tf2czjyMJWsK9G6WmvaVG9Dy6ot8ajkgalx7hdjo6PV4ZyLFkHFimqvf8AAsLV9RsWPHsGRI2qe
1316
6NAhOHkSatRQF+Rt1QpatFCHf8pFYFGCSIMvypTMrEwuRF/g6K2jHIk8wonbJ7gRd4MmLk1o9lwz
1317
vCt7413ZG/dK7jlu/MrMhJ07YelStSP/8sswciR06ABGeU0kkp4OoaFqnujoUfUL4OZN8PRUfzY0
1318
bapuDRvKl4AwGGnwRZkXnxpPSFQIwXeCOXX3FKfuniL8YTh1HevSxKUJjSs1xqOSB40qNqKmfU2M
1319
NEb89ResWQOrVsH9+zBwoHrTbrNmBRi2Hx+vDhEKCoJTp9QtIgIaNFC/CJo0Ue8D8PAAFxe5H0Do
1320
nTT4olxKTk/mQvQFzt07x9m/znI++jwXoi/wMPkh9Zzq0cC5AfWd6lPfuT7GcXUJCnBj0y92pKaq
1321
w/b79IH27QuxyHpiIpw/D2fOqFtoqDo0FMDdXf0F8Hhr0ACqV8/Hzwsh8kcafCH+IT41nksxl7gc
1322
c5lL9y8Rdj+MK/evcPXBVSxNLXnOog48rE10WG3iImrRrG5Nurd2ZVD36tSqbl64ShUF/vpL/SK4
1323
ePHJFhYGDx6oC7zXratubm5Qp466Va0qk8OJApEGX4h8UBSFuwl3CX8YzvXY64Q/DOf8nXDO3rhB
1324
5KMbJBrdxiTdEUeTGtR2qk4T12q4VapK1QpVqWpbledsn+M52+ewNrMuWMUJCeri7leuqDeGPd7C
1325
w9WrzTVqQK1a4OqqbjVrqvtq1IDnnpPrBSIbafCF0IG09Ex2H49ix+FIDp2L5NKdW1hUuo19jVuY
1326
ONwmxSSKmLQ7mBqZUsW2CpVtKlPZpjIu1i5Usq6kfXS2cqaidUUqWlXE3sL+2TeYpaSo1wT+ud28
1327
+WS7execndW0ULVq6hdA1arqY5UqTzZHR7l+UE5Igy+EHmRmqhmaI0eeDNq5cVPBvWksbl5/UaXu
1328
XeyrRWHhdI+H6X9xL/Ee9xLvEZ0UTXRiNNFJ0SSlJ+Fo6YizlTNOlk44WjriZOWEg4UDjpaOOFg4
1329
4GDpoH20t7DH3sIeO3M7zE3M1ZvH7t5VF4S/dQtu34Y7d5483r2r3l2clKTeeebiom6VKj3ZKlZ8
1330
sjk7g5MT2NjIF0QpJQ1+KRcYGIivr6+hwygRSvp78XjQzpkz6o27Z87ApUtqG9uokbrVq/ckXe9U
1331
KY3Y1AfEJMVwP+k+D5IfcD/5PveT7vMw5aG6JT8kNiWW2JRYHqao/45LiYMIcGjogJ25HRXMK2Bn
1332
odIpJ9AAAAviSURBVD7amtmqj+a22Jqpm71ijlNCJg5xadjFpWAdm4x1bAIWD+Ixux+HycNYjKJj
1333
ICZGHbKUnq7+KnByUh8dHcHBIedmZ6fejGZn92SztS32i9Al/XNRnIrSdhZ0fEKB7Ny5k/fff5/M
1334
zExGjRrFxx9/rM/qSi35MD9R0t+LChXA11fdHsvMhOvXn1yvPXYM/P3V67Xx8Wa4ulamdu3KuLqq
1335
mZkaNaB+dXiulpqZedr0PoqiMHnKZN4Z/Q7xqfHEp8YTlxpHfGo8j1Ifafc9SnvEnUd3eJT2iMS0
1336
RBLSEnjEIxKtEkkwSSDRLpHEqokkpidiYmSCtak11mYO2GNBlVQzXNJMqJiSiHNKMo7Jt7F/oGB3
1337
W6FCUiY2SRlYJ6Zh+fdmnpiCWUIyJilpZFiak2lrTZaNDVkVbNRfDLa2UKECRrYVMLK1w7iCHca2
1338
dhjZ/H3c2jr7ZmX15NHK6pnDpUr656K00FuDn5mZyTvvvMPu3bupWrUqzZs3p3fv3jRs2FBfVQph
1339
EMbG6sAbNzf1Rq9/SkhQ0/Lh4XDjBkRGqr8MIiPVjExUlNrgV66cPRvj7KzhdLApB7ZXwcGhCo6O
1340
UNsR7F3UL52CDiVVFIXUzFQS0xJJSk8iKT2JxPREktOTtc+TM5JJTk/m/j/+nZKZoj5mpGi31LQk
1341
NAmJGD9KxDQhCZPEZEyTojBLvI55chpmf6VjEZGGZUoGFqlZ2KRrsEs3wibdCJsMDdZpYJUOVmkK
1342
lukKlqlZmKdngUZDqpkxaX9v6eYmpJuZkGFuSsyDJEJ3rCLT3JRMMzMyLcxQzEzJMjdHMTdDMTND
1343
sTBXp1C1MFcXyzGzQGNuhsbCEo2ZORoLc4zMLNCYm2NkbqFuZhYYmZljZGGB8d//NrawxMTcEmMj
1344
E0yMTDA2MlYfNcYYGxljrFGfG2mMCjUBoCHprcE/ceIEbm5uuLq6AjB48GD++OMPafBFuWJjo96T
1345
5eHx9OOKomZY/vrryRYdrWZe7t1Tp/x/+FAd2fnggbowTHy82iF+nF2pUEF9tLbO3pF+3HG2tARL
1346
Sw2WlhZYWFhgYeGEubk6b5y5OTiYQeW/20pTq78fTZ9sJibqo7FxwdP+iqKQnpVOakaq9jE1M5X0
1347
zHTiM9OIzkxVj2WmkZGSTEZiPFlJiShJSWQmJqCkJKMkJ3F/437COzaB1BRIScUoJQXS0jBKScUo
1348
NRmj+DiM7mdglJqOUXo6xmkZGKdn/P2YiXGGupmkZ2KckYVJRhamGVkY//1okqloN9MMBdMsyDCC
1349
dCPIMIZ0Yw2pRpBupJBuBOnGT45nGkGGsYZMI436+Pe/s4w1ZBobqf820pBlbPT3o4YsIyOyjI1Q
1350
jDQoxkZ/P9egGBmhGBtpH7OMjMBIfV77lTd5YcDEIn0e9ZbD37BhA7t27WLp0qUArF69muPHjzNv
1351
3jy14lL2zSiEECVFicvh59WgywVbIYQoXnq71F61alUiIyO1zyMjI6lWrZq+qhNCCJEHvTX4zZo1
1352
48qVK0RERJCWlsavv/5K79699VWdEEKIPOgtpWNiYsL8+fPp1q0bmZmZvPnmm3LBVgghDEivd090
1353
796dy5cvM3/+fFatWkXdunX59ttvn3ruu+++S926dfH09OTUqVP6DMugdu7cSYMGDXJ9L9asWYOn
1354
pydNmjShbdu2nD171gBRFo+83ovHTp48iYmJCb///nsxRle88vNeBAYG4u3tjYeHR5kek57XexET
1355
E8OLL76Il5cXHh4erFy5sviDLAZvvPEGLi4uNG7cONdzCtxuKnqWkZGh1KlTR7l+/bqSlpameHp6
1356
KhcuXMh2zrZt25Tu3bsriqIox44dU1q2bKnvsAwiP+/FkSNHlNjYWEVRFGXHjh3l+r14fF7Hjh2V
1357
nj17Khs2bDBApPqXn/fi4cOHSqNGjZTIyEhFURQlOjraEKHqXX7eiylTpiiffPKJoijq++Do6Kik
1358
p6cbIly9OnDggBISEqJ4eHg89Xhh2k293x/9z/H4pqam2vH4/7RlyxaGDx8OwP+3d28hTb5xAMe/
1359
ub8uEYnSILVlucJKbV3YbHgACUu8CCKpvKouRoQM6tYusqCQ7rKriDIIKjpAXVQiRQnqWKixQKTD
1360
WoZ2QJthLJyLPf8La3TSXtf2rrbf5257D/6eH9vPd8/7Ps9TVlbGhw8fePfuXaxD052WXNhsNhYs
1361
WABM52J4eDgeocacllwAnDp1ivr6ehYvXhyHKPWhJRcXL15k+/bt4QcfsrPntuj7v0JLLnJycpiY
1362
mABgYmKCrKws/pvzogZ/v8rKShYuXDjj9kjqZswL/sjICCaTKfx66dKljIyM/HafRCx0WnLxrbNn
1363
z1JXV6dHaLrT+rm4efMm+/fvBxJ37IaWXDx79gyfz0d1dTWlpaVcuHBB7zB1oSUXdrudgYEBcnNz
1364
sVgsnDx5Uu8w/wqR1M2Y/1vU+iVVPzyXn4hf7rm06f79+5w7d47u7u4YRhQ/WnJx4MABWlpawpNF
1365
/fgZSRRachEMBunv7+fevXt8+vQJm83Gxo0bWbVqlQ4R6kdLLo4fP8769et58OABHo+Hmpoa3G43
1366
mbOuWJ+Y5lo3Y17wtTyP/+M+w8PD5OXlxTo03Wkdm/D48WPsdjvt7e2z/qT7l2nJRV9fH7t27QKm
1367
b9TduXOH1NTUhHu8V0suTCYT2dnZpKenk56eTlVVFW63O+EKvpZc9PT0cOjQIQDMZjMrVqzgyZMn
1368
lJaW6hprvEVUN6N2h2EGwWBQFRQUKK/XqwKBwG9v2jqdzoS9UaklF0NDQ8psNiun0xmnKPWhJRff
1369
2rNnj7p+/bqOEepHSy4GBwfVpk2b1OfPn5Xf71fFxcVqYGAgThHHjpZcHDx4UDU3NyullHr79q3K
1370
y8tT79+/j0e4Mef1ejXdtNVaN2N+hT/T8/inT58GYN++fdTV1XH79m1WrlxJRkYGbW1tsQ4rLrTk
1371
4ujRo4yPj4f7rVNTU3n48GE8w44JLblIFlpysXr1ampra1m3bh0pKSnY7XbWrl0b58ijT0sumpqa
1372
2Lt3LxaLhVAoxIkTJ1i0aFGcI4++hoYGOjs7GRsbw2QyceTIEYLBIBB53YzbAihCCCH0pe+yNUII
1373
IeJGCr4QQiQJKfhCCJEkpOALIUSSkIIvktbOnTvxeDw/vX/+/HkcDkdE5wwEAlRVVREKhf40PCGi
1374
Tgq+SHjqF6N0nz9/jt/vx2w2R/VvGY1GKisruXHjRlTPK0Q0SMEXCenly5cUFhaye/duSkpKfppj
1375
5PLly9+N2G1ra6OwsJCysjJ6enrC74+OjlJfX4/VasVqtYa3jY6OUlNTQ3FxMXa7neXLl+Pz+QDY
1376
unUrly5d0qGVQsxR1IaECfEX8Xq9KiUlRblcrl9ur62tVX19fUoppV6/fq2WLVumxsbG1NTUlCov
1377
L1cOh0MppVRDQ4Pq6upSSk2Pgl6zZo1SSqnGxkbV0tKilFKqvb1dzZs3Lzzac3JyUuXm5sa0fUJE
1378
IvHmFBXii/z8fKxW6y+3DQ0NkZOTA4DL5aK6upqsrCxgum//6dOnANy9e5fBwcHwcR8/fsTv99Pd
1379
3R3uttmyZct3cx4ZjUZCoRCTk5PMnz8/Jm0TIhJS8EXCysjImHW7+tKv/3U2zm/f/zrroFIKl8tF
1380
WlrajMfPdO5EnPFV/NukD18kpfz8fN68eQOA1Wqls7MTn89HMBjk6tWr4f02b95Ma2tr+LXb7Qag
1381
vLycK1euANDR0cH4+Hh4n0AggMFgwGg06tEUITSTgi8S1mxX2BUVFfT29gLTKyg1Nzdjs9moqKig
1382
qKgovF9rayu9vb1YLBaKiorCk3gdPnyYjo4OSkpKuHbtGkuWLAnPx/7o0SNsNlsMWyZEZGTyNJGU
1383
Xrx4gcPh4NatWxEdPzU1hcFgwGAw4HQ6aWxspL+/H4CmpiY2bNjAtm3bohmyEH9M+vBFUiooKCAz
1384
MxOPxxPRs/ivXr1ix44dhEIh0tLSOHPmDDDdndPV1cWxY8eiHbIQf0yu8IUQIklIH74QQiQJKfhC
1385
CJEkpOALIUSSkIIvhBBJQgq+EEIkCSn4QgiRJP4H4dV1R7rUDroAAAAASUVORK5CYII=
1386
"></img>
1387
</div>
1388
</div>
1389
</div>
1390
</div>
1391
</div>
1392
<div class="cell border-box-sizing code_cell vbox">
1393
<div class="input hbox">
1394
<div class="prompt input_prompt">In&nbsp;[13]:</div>
1395
<div class="input_area box-flex1">
1396
<div class="highlight"><pre><span class="c"># Same plot as previous cell, but with log y axis scale</span>
1397
<span class="c"># With a log scale for y it can be clearly seen that at large r</span>
1398
<span class="c"># the Gauss profile is a parabola and the King profile is a line,</span>
1399
<span class="c"># i.e. has a power-law decrease.</span>
1400
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">gauss</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;Gauss$(\sigma=0.2)$&#39;</span><span class="p">);</span>
1401
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">king</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.1, \gamma=1.5)$&#39;</span><span class="p">);</span>
1402
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">king</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.2, \gamma=3)$&#39;</span><span class="p">);</span>
1403
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;r (deg)&#39;</span><span class="p">)</span>
1404
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;dP(r) / (dx dy) (deg^-2)&#39;</span><span class="p">)</span>
1405
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">)</span>
1406
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">(</span><span class="mf">1e-3</span><span class="p">,</span> <span class="bp">None</span><span class="p">)</span>
1407
<span class="n">plt</span><span class="o">.</span><span class="n">semilogy</span><span class="p">();</span>
1408
</pre></div>
1409

    
1410
</div>
1411
</div>
1412
<div class="vbox output_wrapper">
1413
<div class="output vbox">
1414
<div class="hbox output_area">
1415
<div class="prompt output_prompt"></div>
1416
<div class="output_subarea output_display_data">
1417
<img src="
1418
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtczuf/wPHXXcqZipYUQoQYGTmWYoY5M2TOhznkNJux
1419
OfwcZhsbY87mfG5zPoci5aySQ8wpETKFSkmpPr8/rrm/a0l1d9/dHa7n43E/tvtzf+7Pdd3ts/t9
1420
X6f3pVIURUGSJEmSMmCg7wpIkiRJeYMMGJIkSVKmyIAhSZIkZYoMGJIkSVKmyIAhSZIkZUohfVdA
1421
UyqVSt9VkCRJypM0nRybp1sYiqLIh6Iwffp0vdchtzzk30L+LeTf4v2P7MjTAUOSJEnKOXm2Swqg
1422
5YaWFDMqpn6UK1GOCqUqUKF0BaqZVaN6meoYGhjqu5qSJEn5Qp4OGBUCK2DXwA7burbEJsbyJPYJ
1423
1yKucejOIW49u8Xjl4+xN7envmV9XGxccLVxxaKEhb6rrXUuLi76rkKuIf8W/yP/Fv8j/xbg4+OD
1424
j49Ptq6hUrLbqaUnKpUqw/64lwkvufL3FS4+vohPqA8n75/EqqQVHap3oFvNbjQs31AOnkuSVKBk
1425
5rsz3ffm54DxX8kpyQSEB7D35l52Xt/Jqzev6Gnfk0H1BmH/gb2OaipJkpR7yIChAUVRuB5xna3X
1426
trI+aD3WpawZ4jCEPnX6UNy4uBZrKkmSlHvIgJFNySnJHL17lN8Df8fvvh+DHQYz2nE0FUtX1Mr1
1427
JUmScgsZMLQo5EUISy4sYcPlDbS1bcvk5pNld5UkSflGgQ0YXbtOp1YtF2rXdsHQEIyNoXBh8Sha
1428
FEqWhBIloFQp8TDMwgzbmIQYll1cxoJzC2hesTlTnabiYOmguw8kSZKkQ29nSc2cObNgBoy+fRWS
1429
k1E/EhMhIUE8Xr2CuDh4+RJiYiA2VgQPU1MwN4cPPhAPCwuwsgJra/GoVAnKloW3k6fiEuNYFbiK
1430
n0//TPOKzfne9Xvsytrp98NLkiRpqMC2MLJS9eRkiI6GFy8gMhKePhWP8HB49Eg8Hj6E+/fh9Wuw
1431
sYEqVaBaNbC1hYq2cZxJWsyq4Pl0suvELJdZWJWy0t0HlCRJ0gEZMLQsJgZCQyEkBG7fFo+bN+HG
1432
DUhQRVGi7Vye2fxOyxKjGe/4DU0+KkGJEjqpiiRJklbJgJGDIiIgOBhOBt1nU/hkHhj4oDr+A1Ve
1433
9qdhAwMaNoTGjaFuXTGmIkmSlJvIgKFHFx5dYPShMSTEG9DJaDFPgxpw7hzcuQP16oGTk3g0awYm
1434
JvqurSRJBZ0MGHqWoqSwIWgDk49PpmP1jvzU6ieMk8tw/jycOgV+fnDhghgPadUKWrYUQUR2Y0mS
1435
lNOy892Zp9Obz5gxI9vJtLTBQGXAIIdB/DXqL4oaFcV+mT3b76ylZasUZswAb2949gyWLBHTe3/+
1436
GSwtwcUF5syBS5cgl8Q+SZLyKR8fH2bMmJGta8gWhg4Ehgcy8uBIjAyMWNFhBbU/qJ3mnLg48PGB
1437
I0fA01M8b98eOnSAjz+GYsVyvt6SJOV/sksqF0pRUvg94HemnZjGsI+GMdVpKkWNiqZ7/q1bcPAg
1438
7N8PAQGi26prVxFAzMxysOKSJOVrMmDkYuEvwxnnOY5LTy6xssNKWlZumeF7nj+HAwdg9244fhya
1439
NoWePaFLF7HwUJIkSVMFN2AULQoGBiLnx79zgxQpkjo3SMmSYoqSqen/lnq/Xe5tYQHly4v36dCB
1440
WwdwP+jOJ1U/4ZfWv2BaNHPf/LGxouXx55/g5QUtWsDnn0OnTrLbSpKkrCu4ASMujkznBomKEsu8
1441
37XU+++/xWi0tTVUrCjyg7xd6m1rK/6phW/nmIQYJntPZvdfu1nUdhHda3XP0vtfvhStji1b4Px5
1442
6NwZBg4UQcQgT09fkCQppxTcgKGtqqekiBV5Dx/Cgwdimffbpd537sC9e6JFUqMG1Kwp/lm7NtSp
1443
o1Ef0akHpxi6byi1P6jNkk+XUK5EuSxf48kT2LYN1q0T8XDAABg0SMQ5SZKk9MiAoWvJySKQ/PWX
1444
eFy/DteuiUfp0mKFnoODeNSvL1ooGWz9+jrpNbNOzmLNpTX80voX+n3YT6PtYhUFgoJE4NiyBRo0
1445
gKFDRetDrjSXJOm/ZMDQl5QUka0wKEgsprh0Cfz9RYBp2BAcHaFJE2jUSASWdwgMD2TQ3kFYl7Jm
1446
ZYeVWJey1rg68fGwaxf8/ruYdTV0KAwbBhUqaHxJSZLyGRkwchNFEalvL14UAw1nz4p5spUri/wg
1447
zs5imfe/vsUTkxOZc2oOiy8sZk6rOQx2GKxRa+Pfrl+HFStg82YxxjFunPhnNi8rSVIeJwNGbvfm
1448
DVy+LPKE+PqKXCElSojFFq6u4mFlxdW/rzJo7yDMipqxutNqrWwRGxsrgsaiRWBkBGPHQp8+YiKZ
1449
JEkFT4ENGNOnT8fFxQUXFxd9VydrFEU0AU6cEA8fHzG9t3Vrklu1ZEHhS8y9spTZrrMZ9tGwbLc2
1450
3hbp5QULFkBgILi7i0fZstn/OJIk5X4Ffse9PFr1tFJSxPjH0aNw7BhcvEhsPXvWlntMkIMl00Zs
1451
o7JZFa0Vd/06/Por7Nwp1nRMmCB6zCRJyv8KbAsjj1Y9Y7GxcPw4KYcO8nLPn0QlxhDd2onagyZh
1452
4NpSa4sMnzyB334Tg+Tt2sGkSWKmsCRJ+ZcMGPmZohDit5/Dv43G+Uo0tZ4qGLZtJ/KEfPppurOv
1453
siI6GpYvh4ULRRqSadPEDGFJkvIfGTAKgOSUZBacW8Cawz+yJLkNLa+8ROXrC82bQ7duYuGFuXm2
1454
ynj1SrQ2fvlFLCeZMQM++kg79ZckKXeQAaMAuRl5k8H7BmOoMmRdy0VUPXdTDEYcOSLWfvTsKdLc
1455
ZiN4vH4Nq1fDTz+JS86YIdYmSpKU9xXYDZQKIruydvgO9KVrja40+uNjFlR8TLLHNpETa+RIsVuT
1456
rS20aSOWf0dFZbmMIkVg9GiRFcXVVfR89ewJN2/q4ANJkpRnyBZGHnbn+R2G7BvCm+Q3rO28lhpl
1457
a4gX4uJEittt20R+9JYtxeKLDh00WoARFweLF8P8+aLna/p0uXpckvIq2cIooGzNbDkx4AR96vTB
1458
aZ0Tc07NISklCYoXF02C3btFDqxOncSy7/LlYfBgse4jJSXT5RQvDt9+K9KNfPCB6J6aNEmjxosk
1459
SXmYbGHkE6FRoQzbP4xn8c9Y22ktdcvVTXvSo0ei1bFpk/i279sX+vcHO7sslfXokRjX2LsXvvsO
1460
Ro2SiQ4lKa+Qg94SAIqisC5oHd96fcvwBsOZ6jSVwoXSWbNx+TJs3ChS3FapIjbW6NUrS9N0g4Nh
1461
4kQxtvHLL2Kmr8xVJUm5mwwYUiqPXz7G/aA7t57dYk2nNTSp0CT9k9+8ETOs1q0TA+YdO8KQISJJ
1462
YiZ3ZTp6FL7+GsqUEWs55IwqScq9ZMCQ0lAUhR3XdzDWcyw97XvyQ8sfKGFc4v1viogQmQrXrBFz
1463
a4cMES0PS8sMy0tKElNxp08Xy0K+/17mqZKk3CjfDXrHxcUxYMAAhg0bxtatW/VdnTxJpVLRw74H
1464
10ZeIyYhhtrLanP49uH3v8ncHMaPh6tXRVfVvXtQq5boazp4UOzzkY5ChWDECLG/lLGxeNuSJSKQ
1465
SJKUP+TKFsamTZswMzOjffv2uLm54eHhkeYc2cLImmN3jzH8wHCaVGjCwjYLMS+eyYV9L1/CH3+I
1466
JeB//y12ZRo8GKys3vu24GCxliMqSqQdadxYCx9CkqRsyxMtjMGDB2NhYUGd/2S38/T0pEaNGlSr
1467
Vo25c+cC8OjRIyr8M9Hf0NAwp6qYr7Wu2pqrI69iWcKS2strsyFoQ+ZumpIlRZC4cAH27IHHj0WG
1468
wm7dRGbddKbn2tuLJSDffAPdu4tLPHum5Q8lSVKOyrGAMWjQIDw9PVMdS05OZvTo0Xh6enL9+nW2
1469
bdvGjRs3sLa2JiwsDICULKwXkN6vuHFx5n0yj8N9DvPb+d9ovak1t5/dzvwFHBxEc+H+fbGS/Jtv
1470
xJTc+fPh+fM0p6tUIn36jRtiLYe9PWzYIPbmkCQp78mxgOHk5ISpqWmqYxcuXMDW1hYbGxuMjIxw
1471
c3Nj7969dOvWjZ07d+Lu7k6nTp1yqooFRn3L+lz44gLtbNvRZE0TZvvOJjE5MfMXKFkShg8Xe3hs
1472
3Cim6FatCoMGiT3N/6NUKZFG/eBBsfNfy5YyzYgk5UWF9Fn4v7ueAKytrTl//jzFihVj7dq1Gb5/
1473
xowZ6n/Pkzvv6VEhg0J83fRrPqv1GaMOjaLeinqs7LASp0pOmb+ISgVNmohHRISYXfXZZ1CunBjA
1474
6NEj1d4dH30ktjlfskRsb/7VV6KRYmSkgw8oSRLwv532tCFHB71DQ0Pp2LEjV69eBWDnzp14enqy
1475
atUqADZv3sz58+dZvHhxhteSg97aoygKu27s4ssjX/JJ1U+Y+/FcyhbTcE5scrJoSixZAleuwBdf
1476
iOlT/xkkv39fHH78WEzHbdhQCx9EkqQM5YlB73exsrJSj1UAhIWFYW1tnen3z5gxQ2uRsyBTqVR0
1477
r9WdYPdgShUuhf0ye9ZeWkuKosH4kaGhyF119KjIWfXihRgkd3ODM2fUAxiVKsGhQ6KF0aGDyFX1
1478
+rV2P5ckSf/j4+OTqldGE3ptYSQlJWFnZ4e3tzfly5fH0dGRbdu2UbNmzQyvJVsYunMp/BIjDo6g
1479
kEEhlrdfzocWH2bvgtHRsH69SHlragrjxonkiP8koPr7b5GPKjgY1q4VPVySJOlGtr47lRzi5uam
1480
WFpaKsbGxoq1tbWydu1aRVEU5dChQ0r16tWVqlWrKj/++GOmr5eDVS+QklOSlZX+KxXzn82VLz2/
1481
VKJfR2vhosmKsn+/onz8saJYWirKrFmK8vff6pe3b1eUcuUUZeJERYmPz35xkiSllZ3vzly5cC8z
1482
VCoV06dPl4PdOhYRF8G33t/ieceTnz/+mc/rfI5KGxkGr10TU6a2bxdrOr78EurUISJCjG3cvCmm
1483
4MotYiVJO94Ofs+cOVPmkpJ062zYWUYdGkXJwiVZ0m4JdSzqZPymzIiMhJUrYelSsVBj/HiUNm3Z
1484
6mHA+PFistXkySL1iCRJ2SeTD0o5Ijklmd8Dfme6z3Tcarsx02UmpkVNM35jZiQmihQkv/4qRr/H
1485
j+dRy34Mci/Ky5diCw9bW+0UJUkFWZ6dJSXlLYYGhoxsOJLro66TmJxIzaU1WR24muSU9JMSZpqx
1486
MfTrB4GBYjX5gQNYNbPhSKP/Y3D7v2ncWEy/lb8RJEl/MmxhBAcH4+vrS2hoKCqVChsbG5ycnLC3
1487
t8+pOr6THMPQv8DwQMYcHsPrpNf81vY3mldsrt0Cbt6EBQvgjz940bI7g699hUHtWqxaBWZm2i1K
1488
kvI7nY5hbNq0icWLF1OmTBkcHR0pX748iqIQHh7OhQsXiIyMZNy4cfTt2zdbH0JTsksqd1AUBY9r
1489
Hkz0mkjzis2Z+/FcKpauqN1CIiJg+XKUpUu5XrwhM2Mn4P5HC1xc5fZ+kpRVOhnDWLRoEYMGDaJk
1490
yZLvfGNMTAzr169n7NixGhWcXTJg5C5xiXHMPT2XpReXMtpxNBObTqS4cXHtFhIfD5s2ETdrPnee
1491
luRmxwl02/IZhYrIEXFJyiw56C3lGg+iH/Cd93ecDD3Jj61+pO+HfTFQaXmoLCWFF5sOEPblPMrG
1492
h1Fs8nhMvh4iUuJKkvReOhv09vT0ZM2aNYSGhqY6vmbNGo0K0zaZGiT3qVi6Ilu6bWF7j+0su7iM
1493
hqsacjL0pHYLMTDAdEAnaj/z5eggD/x+9CWhvA1MmyaWjUuSlIZOU4N89913nD59mvr167N//37G
1494
jRun7n5ycHDg0qVL2So4u2QLI/dTFIU/gv/gW69vqVeuHnM/notdWTutl3PqFHzX4w4/W/5K41AP
1495
VD16wNdfQ/XqWi9LkvI6nbQw9u/fj7e3NwsXLiQgIIDDhw/z5Zdfyi9pKdNUKhVutd34a/RfNK3Q
1496
lObrmjPq0Ciexj3VajnNm8OuK7bM/GAZnar9RUwxC5E/vXt3kU9dkiStSDdgJCcnY/TPRgUmJibs
1497
37+fmJgYevToQWJiFjbbkQq8IoWKMLHZRG6MuoGRgRG1ltZitu9s4hLjtFaGubnIftu40wfYeczC
1498
Z30ouLhAr17QooV4Uf7YkaRsSTdgVKlShZMn/9f3XKhQIdauXUuNGjW4ceNGjlQuI3IMI28pW6ws
1499
C9su5PzQ81x7eo3qS6qz0n8lSSlJWrm+gQFMmQKbN0PvocWZEzeGlJu3xe6AkyfDhx+KJeNv3mil
1500
PEnKS3Q6hhEfHw9A0aJF07z28OHDLO1boQtyDCPv83/szySvSTyMecgPLX+ge83u2klsCDx8KDb8
1501
++ADsYts6VIKHDkCP/8Md++K7f6GDpUzq6QCRydjGEWLFk0TLN5GJ30HCyl/aFC+AV79vFjcbjE/
1502
+v2I42pHvEK8tHJta2s4eRIqVABHR7h+QwVt28Lx47BjB/j5QeXKMH26SIAoSVKGsrQOIzfMjnpL
1503
tjDylxQlhR3XdzD1+FQqlq7IDy1/oJF1I61ce/16sbPfypUik7rarVswb54IIH36iJlVNjZaKVOS
1504
ciuZfFDK8wxUBvS070mwezButd3osb0HnT06c+XvK9m+9sCBcPgwjB8vxjhS3u48W706/P672Oqv
1505
WDGx+Ua/fvDPjpCSJKWWpRZGcnIyhoaGuqxPpskWRv72Ouk1K/xXMOfUHFxsXJjhMoMaZWtk65oR
1506
EfDZZ1C6tBgYL1XqPydERcGKFfDbbyJ4fPutmLMrSfmITlsYjx49Uv97bgkWb8lZUvlXkUJF+LLx
1507
l9wZe4d65erhvM6Z/rv7c+f5HY2vaW4Ox46BlRU0bgy3b//nBBMTESTu3YOOHWHAABEw9u//V7NE
1508
kvImnc6SArh69SpffPEF586dy1YhuiBbGAVL9OtoFp5byOILi+lo15FpztOoYlpF4+utXAn/93+w
1509
dSu0apXOSUlJsHMnzJkj/n3SJLGu45/1SZKUF+mkhXHixAl69erF5s2bNa6YJGlL6SKlme4ynTtj
1510
71CxdEUarmrIkH1DCHkRotH1hg8XG/z16QPLlqVzUqFCIkAEBsL8+bB2LVSrBkuWwKtXmn8YScqj
1511
0m1hlChRgvPnz+t9o6T0yBZGwfY8/jkLzy1k2cVldLTryBSnKdiaZX0P17t3Re+Tq6sYushw7/Dz
1512
52HuXDh9GsaMgVGjwFRL29RKUg7QSQujT58+zJ49W34pS7mSWVEzZrnO4vaY21QqXYnGqxvTd1df
1513
bkRkLQtB1apw9iyEhED79hAdncEbGjWCXbvAx0dEG1tbmDAB/jXWJ0n5VboBY+XKldjb2+ttRz1J
1514
ygzToqbMcJnB3bF3qVm2Ji3Wt6Dn9p4EPQnK9DVKlxbj2ra2Imfhf7L5v1vNmrBuHQQFQXIy1Kkj
1515
Vo7fvKnxZ5Gk3O69s6SmTp3KJ598klN1kSSNlS5SminOUwgZF0Ijq0Z8uuVTOmztwNmws5l6f6FC
1516
Ymjiiy+gadMsJLmtUEHsO377tlhe7uQk5u76+2v+YSQpl8rTO+5Nnz4dFxcXXFxc9F0dKZd5nfSa
1517
9UHrmXt6LpVKV+K75t/xSdVPMpWrav9+GDwYVq2CLl2yWHBsLKxeDb/+KhYGfvcdtGwJWsqRJUma
1518
8vHxwcfHh5kzZ+pui9aAgIA0/5OVLl2aSpUqUSjDEULdkYPeUma8SX7DH8F/MOfUHAoXKsykZpPo
1519
XrM7hgbvX1MUEACdOsHEiTBunAYFJyaKObtz50KJEmJ9R5cukMvWMkkFj0739G7cuDEBAQF8+OGH
1520
gFibYW9vT3R0NMuXL6dNmzYaFZxdMmBIWZGipHDg1gHmnp7Lk9gnTGgygYH1BlLUKG025rfu34d2
1521
7aBNGzGr1kCTRDopKbB3r1jLERUlIlDfvlC4sOYfRpKyQacrvcuXL09QUBABAQEEBAQQFBRElSpV
1522
OHbsGBMnTtSoUEnKaQYqAzrZdeL04NNs6LKBw3cOU/m3ynx/8nuevXr2zvdUqiRmz166BG5u8Pq1
1523
JgUbQNeucO6cWC24fbuYmjV/Prx8mb0PJUk5LMOAcfPmzVRrMWrVqsVff/1F1apVtbZ3gSTlpOYV
1524
m7Ov9z6ODzhOaHQo1RZXY8zhMdx9fjfNuaam4Okp/r1tW9FI0IhKJXYA9PQUgyT+/lClCkydCk+1
1525
u2WtJOlKhgHD3t6ekSNHcvLkSXx8fHB3d6dWrVokJCSot3CVpLyolnkt1nRaQ7B7MCWMS9BodSO6
1526
/9mdM2FnUp1XpAh4eEC9eiK11MOH2SzYwQG2bROtjshIqFEDRo8WOawkKRfLcAzj1atXLFu2jNOn
1527
TwPQrFkz3N3dKVKkCHFxcZQsWTJHKvpfcgxD0rbYxFjWXVrHwvMLMS9mzvjG4+leqzuFDMTkDkUR
1528
PUmLF4uGQs2aWir4yRNYtEikWm/TRuSs+mfMUJK0TaeD3iCCxoMHD6hRI3vppbVJBgxJV5JTktl3
1529
cx8Lzi0gNCqUMY5jGFp/KKZFRQqQjRvF2PXevWLht9bExIhxjgULoG5dMbPK2VlOyZW0SqeD3vv2
1530
7cPBwYG2bdsCcOnSJTp16qRRYZKUFxgaGNK1Zld8B/myu9duLv99mSqLquB+0J2/Iv+if39YswY6
1531
dPjf+IZWlColtga8dw+6dxerCJs0gd27ZXp1KVfIsIVRv359jh8/jqurq3p71tq1a3Pt2rUcqWB6
1532
ZAtDyknhL8NZ7r+c3wN+p265uox1HEvpiHZ072bAokUiqa3WJSfDnj1iSu7LlyKYyCm5UjbptIVh
1533
ZGSEiYlJ6jdpNCFdkvIuy5KWzHKdReiXofSp04fpPtMZGFCd/ssX8OW3L1i5UgeFGhqKlsaFCyIH
1534
+59/iim58+aJ7itJymGZmiW1ZcsWkpKSuH37NmPGjKFp06Y5UbcMyR33pJxWpFAR+tftz8UvLrKp
1535
6yYe48+rYVX4xncYY3+4rJtCVSqRXuTIETElNyBATMmdPFkMmEtSJuh8xz2AuLg4fvjhB44ePQpA
1536
mzZtmDZtGkWKFMlWwdklu6Sk3OJJ7BMWnFzNr74rKFfEhjnd3fmsVncKF9Jh11FIiMhXtXUr9Ogh
1537
UqxXq6a78qR8Q+ezpHIjGTCk3ObJ0ySaDd5PYt1lJJpeYbDDYIbVH0Zl08q6KzQiQqTZXb5czKia
1538
OBEcHXVXnpTn6SRgdOzYMd0CVCoV+/bt06hAbZEBQ8qNoqPF7Kkydjep/NnvbL66kQblGzDioxG0
1539
r95evaZD6+LixBay8+eDjY0IHO3aySm5Uho6CRhvxwZ2797NkydP6Nu3L4qisG3bNiwsLFi4cKHG
1540
FdYGGTCk3OrVK5E+qnRpWL0+nj23t7MyYCX3o+4zpP4QhjgMoWLpirop/M0bka/q558hKUnMrOrd
1541
G4yNdVOelOfotEvqo48+IiAgIMNjOU0GDCk3e/0aevYUP/D//FPMhL3691VWBa5iy9UtNLZuzBf1
1542
v6B9tfYYGeogxY6iwLFjInDcvClytA8bJtZ6SAWaTqfVvnr1irt3/5eULSQkhFevXmlUmCQVFEWK
1543
wI4dYGQktsGIj4c6FnVY1G4RYePD6GXfi/ln51NpYSW+8/6OO8/vaLcCKhV88gl4eYkl6YGBYmbV
1544
pEnw+LF2y5IKjAxbGJ6engwbNozKlcXAXWhoKL///rve9sF4S7YwpLwgKQkGDBCzX/ftg+LFU79+
1545
I+IGay6tYePljdQyr8UQhyF0r9WdYkbFtF+Z0FCRdmTTJujcWcys+lcmaqlg0PksqdevX/PXX38B
1546
UKNGDb1PqQUZMKS8IzlZbPn64IFYRlGiRNpzEpMT2XdzH2svreXcw3P0tO/JYIfBNCzfUPvbCDx/
1547
LmZVLVkiMud+841IvS4HyAsEnQ16Z7RX9okTJ3B1ddWo4OySAUPKS5KTxRDC7dtw8CC8L8nzw5iH
1548
bLy8kbWX1lK4UGEG1h1Iv7r9KFeinHYr9fo1bN4sVo6XKCFaHJ99BnrcelnSPZ0EjAkTJuDr68vH
1549
H39MgwYNsLS0JCUlhSdPnuDv74+Xlxeurq78/PPP2aq8pmTAkPKalBQYMQKuX4fDh98fNAAUReHU
1550
g1OsC1rH7r9206xCMwbUHUBHu44UKaTFVn5KChw4IALHgwcwfrxoEulp6wJJt3TWJfXy5Uv27t3L
1551
6dOnuX//PgCVKlWiefPmdO7cmRLvalvnEBkwpLwoJQXc3eHatcwFjbdiE2PZdWMXGy5vIOhJED3t
1552
ezKg7gAaWTXSbpfV+fMicJw4AUOHwpgxYGWlvetLeidXektSHvK2pXHjhggaWf3d9SD6AZsub2Lj
1553
lY0oikK/D/vR98O+2l1RHhICCxeKAfJOneDrr+WmTvlEvgwY9+7d44cffiA6Oprt27eneV0GDCkv
1554
S0mB4cPFEolDh7IeNEB0WV18fJENlzfwZ/Cf2JWxo++Hfelp3xOzombaqejz52JTp8WLoXZtETg+
1555
+UQOkOdh+TJgvNWjRw8ZMKR8KSVF7JEUEiIGwotlYyZtYnIiR+4cYdOVTRy5ewRXG1f61OlDh+od
1556
KGpUNPuVTUgQ+5DPny+ef/UVfP653JsjD9Lpwr3sGjx4MBYWFtSpUyfVcU9PT2rUqEG1atWYO3eu
1557
rqshSbmOgYHYxrtCBbEs4vVrza9lbGhMR7uO/NnjT8LGh9GlRhd+D/yd8r+WZ+CegRy9e5SklCTN
1558
CyhcGAYOhCtXRJbcP/4QOatmz4bISM2vK+UpGbYwoqKiOHv2LKGhoahUKmxsbGjSpAmlS5fOVAF+
1559
fn6UKFGC/v37c/XqVQCSk5Oxs7PDy8sLKysrGjZsyLZt2/D39ycwMJBvvvmG8uXLA7KFIeV/ycli
1560
I73oaLEbqzZ/tD9++Zg/g/9k69Wt3I++T49aPehduzdNKjTBQJXN34vXromFgLt2iS0Hx48HOzvt
1561
VFzSGZ10Sfn5+fHLL78QGhqKg4MD5cuXR1EUwsPDuXTpEjY2NkycOJHmzZtnWEhoaCgdO3ZUB4yz
1562
Z88yc+ZfJuIXAAAgAElEQVRMPP/ZEHnOnDkAfPvtt+r3PH/+nMmTJ+Pt7c3QoUOZNGmS1j60JOU2
1563
b96IHIFv3vwvpYi23Xl+B49rHmy7to3YxFh62ffCrbYbDuUcsjfT6u+/YelSMdbRsKHornJ1leMc
1564
uVR2vjvTXaGze/du5s+fT7V0NmW5desWK1asyFTA+K9Hjx5RoUIF9XNra2vOnz+f6hwzMzNWrFjx
1565
3uv8e/coFxeXDBcaSlJuZWQk9kLq1g369YMtW8QOrdpka2bLVOepTHGawtWnV/kj+A96bO+BocqQ
1566
XrV70bNWT2p/UDvrwcPCAmbNgu++EwsBR48W2XHHjwc3NznOoWc+Pj5a25k0wy6p5ORkDLN55/63
1567
hbFz5048PT1ZtWoVAJs3b+b8+fMsXrw409eULQwpP3r9WuynUbEirF4txjl0SVEUAsID8Ljmwfbr
1568
2ylmVIye9j3pWasn9h9omGcqJQWOHhXdVVeuiIUnI0aAubl2Ky9pRKeD3tWqVeObb77h+vXrGhXw
1569
LlZWVoSFhamfh4WFYW1tneXryD29pfymSBGRXPbWLRg7VmQp1yWVSkWD8g2Y98k8QseFsq7zOl4m
1570
vKTdlnbUWlqL6T7Tufb0Wta+YAwMoG1bsQe5l5dYPV69upgSdu2a7j6M9F45sqd3TEwMHh4erF+/
1571
nuTkZAYPHkzv3r0plYW8+v9tYSQlJWFnZ4e3tzfly5fH0dGRbdu2UbNmzcxXXLYwpHwsOhpatRJL
1572
Hn78MefLT1FSuPDoAtuvb2fH9R0ULVSUz2p9Rvea3alXrl7Wu60iImDFCli2DOrUgS+/FEFF100o
1573
KY1sfXcqWXDixAmlfPnyStGiRZX+/fsrt2/fzvA9bm5uiqWlpWJsbKxYW1sra9euVRRFUQ4dOqRU
1574
r15dqVq1qvLjjz9mpRrKP0Euy++RpLwkIkJRatVSlDlz9FuPlJQU5fzD88o3R79RKi+srFT5rYoy
1575
4egE5WzYWSU5JTlrF3v9WlE2blQUBwdFqV5dUZYuVZSXL3VTcemdsvPdmWELIykpiYMHD7Ju3TpC
1576
Q0Pp378/n3/+OadOnWLy5MncunVLs0iVTSqViunTp8vBbilfe/wYnJxEItmRI/VdGzHmEfQkiF1/
1577
7WLn9Z3EJMTQpUYXutXshnMl58zvWa4ocOqUGOfw9YVBg8RgeaVKuv0ABdjbwe+ZM2fqbqV3lSpV
1578
cHFxYejQoTRt2jTVa2PGjMnSQLU2yS4pqaAICQFnZ5g7F/r00XdtUvsr8i9239jNzhs7CY0KpUP1
1579
DnSt0ZXWVVtnfhOo0FCxN8e6dWJfjnHjRJSU03J1QqepQWJjY/WalTY9MmBIBUlwsBjTWLsWPv1U
1580
37V5twfRD9jz1x52/7WbgMcBfFzlYzrbdaZD9Q6UKVYm4wvExsLGjfDbbyJPyrhxYlpuLtiwLT/R
1581
ScAYM2ZMugWoVCoWLVqkUYHaIgOGVNCcOwcdO4rV4Bosf8pRka8iOXjrIHtv7sX7njcO5RzobNeZ
1582
zjU6U8W0yvvfnJIiZlgtWiT2Ih82TEzLlWnWtUIn02o/+ugjPvroIxISEggMDKR69epUq1aNoKAg
1583
EhMTNa6sNslptVJB0rixWNDXvTtcvqzv2rxf2WJlGVBvALt67eLJ10/4usnXBEcE02RNE+osr8Nk
1584
78mce3iOFCUl7ZsNDKBdO5H73dcXoqLEzKreveHMGd3PNc6ncmRabaNGjTh16hRG/+QqePPmDc2b
1585
N0+zMjunyRaGVFD9+adYRO3nB1Uy+LGe2ySnJHPh0QX239rPvpv7iHgVQftq7elYvSOtq7amhHE6
1586
3d/R0WKMY8kSMDERGzv16iW7qzSg0zEMOzs7zpw5Q5kyog/y+fPnNGnShJs3b2pUoLbIgCEVZMuW
1587
iQlGp0/DBx/ouzaaC3kRwoFbB9h/az/nH56nWcVmdKjWgfbV22NjYpP2DSkpouWxeDFcuiR2BRw5
1588
EjRY+FtQ6TRgrFu3jhkzZuDq6oqiKJw8eZIZM2YwcOBAjQrUFhkwpILu//5PbL504kT+2H47JiGG
1589
Y3ePceD2AQ7dPoR5MXPaV29P+2rtaVqhadopuzdviqSHmzeLGQFjxsjZVZmg8w2UwsPDOX/+PCqV
1590
CkdHRywtLTUqTJvkOgypoFMUMRZ8964IHMbG+q6R9qQoKVx8dJGDtw9y8PZB7r24R+uqrfnU9lPa
1591
2rbFooTF/06OiRGzq5YsEYkOR48WmzsVL66/D5AL5cg6jNxKtjAkSeyl8dlnYhbqpk35N9NG+Mtw
1592
PO94cujOIbxCvKhqWpV21drRzrYdjawaYWhgKCKol5dodZw6Bf37i8SHtrb6rn6ukq+3aE2PDBiS
1593
JMTHw8cfQ9Om8Msv+q6N7r1JfsOZsDMcvnOYQ7cP8ejlI1pXaU1b27a0qdoGy5KWYjHg8uVioPyj
1594
j2DUKDHzSts54/MgGTAkqYB7/hyaNYPhw0Vev4LkYcxDjtw5guddT7xCvKhUuhJtbdvS1rYtTc3r
1595
Y7xjt2h1REaKPrzBg6FsWX1XW290mt7cy8srzbENGzZoVJi2yXUYkiSYmYGnJ8yfD+/Y0Thfsy5l
1596
zZD6Q9jeYzsR30Sw9NOlGBsaM/HYRMwXV6Cj8Q6WLOnP/d9/Qbl+XXRRDRgAFy4UqDUdObIOw8nJ
1597
idq1azNv3jxevnzJF198gbGxMTt37sxWwdklWxiSlNbly9C6tdhmO7evBs8Jz149wyvEiyN3j3Dk
1598
7hGMDIzoZu7MwEAF+11+GJYpK8Y53NzEQFABoNMuqZSUFObPn8/KlStRqVTMnDmTzz//XKPCtEkG
1599
DEl6t6NHxXjvyZNgZ6fv2uQeiqJwI/IGR+8e5ejdo5wJ9WPg35aMuKhQ9eZTVP0GUMh9VL7/o+k0
1600
YDx79oyRI0cSHR3Nw4cP6devH5MmTcrepvFaIAOGJKVv/XqxzfbZs2LLbSmthKQEzj48y7GQYwRf
1601
OIiT5w0GX4KY6pVQRgynYr/RGBjnv/3IdRowqlevzqRJkxgyZAivXr1i0qRJBAQEcObMGY0K1BYZ
1602
MCTp/WbOhAMHwMdHLknIjBfxLzh56yjPN6+izu7TVIhI5PQnNUgY2J/GTXtknDQxj9BpwLh//z6V
1603
/rOpycmTJ2nRooVGBWqLDBiS9H6KAgMHijRMO3fKGaVZFX72GC8WzqHioVP4VVLh0dwEo7af4lql
1604
Fa6VXSlfsry+q6gRnQSMgICA93Y71a9fX6MCtUWu9JakjCUmQps2UK+eyD0laSA2FmXbNl4vWUhi
1605
5N/sd7bg+6qPMLC0xNXGlZaVW+Ji40LZYrl7qq5OV3q7uLigUqmIj48nICCADz/8EIArV67QoEED
1606
zp49q3nNtUC2MCQpc168EIv6Ro0SWTOkbPD3hxUrUHbsIMq5IV4fV2WD2QP8Hp6mUulKuFZ2xdXG
1607
lRaVWmBa1FTftX0nnXZJdevWjZkzZ1KnTh0Arl27xvTp0+W0WknKQ0JCxMK+1auhfXt91yYfiIoS
1608
SQ9XroTXr0n+YihBbepy7GUQJ0JPcDbsLFXNquJi40KLSi1wruSMWVEzfdca0HHAqFWrFtevX8/w
1609
WE6TAUOSsubsWejUCby94Z8OAym7FEX8YVeuhL17RfqR4cN507wpAU8C8Qn1UQeQyqaVaVGphTqA
1610
mBc310uVdRow3NzcKFGiBH379kVRFLZu3UpsbCzbtm3TqEBtkQFDkrJu2zb49lux3WsuSDqdv7x4
1611
8b9Wx5s38MUXYkW5uTlvkt8QEB7AydCTnLx/ktNhp7EuZY1zJWd1AMmpQXSdBoz4+HiWL1+On58f
1612
AM7OzowcOZIiet7pSgYMSdLMrFn/m25bQBY356y3rY5Vq2DPHvjkExE8WrZUpxNOSkki6EkQvvd9
1613
8b3vi98DP0yLmOJcyRmnik44V3KmimkVnax3k8kHJUnKNEWBfv3EDCoPj/ybEj1XiIoSG7GvWgUv
1614
X8KQITBoUJrmXYqSwvWI6/jd98P3gQgiiqLQvGJznCo60bxicz60+FCkcc8mnQSM9u3bM3DgQNq3
1615
b0+x//wMiYuL48CBA2zYsIFDhw5pVHB2yYAhSZp7/RpcXcWU22zmo5MyQ1HEDKtVq0R2yBYtxPay
1616
bdtCoULvOF0hNCoUvwd++D3w49SDUzx++Zgm1k1wquhEs4rNcLRypJhR1puIOgkYT58+ZcmSJezY
1617
sQNDQ0MsLS1RFIUnT56QlJREr169GDVqFObm+hu4keswJElzf/8NjRrBnDki956UQ2Jj4Y8/RPB4
1618
+FC0OAYPhsqV3/u2iLgIzoSdwe+BH6fDTnPl7yvU+aAOzSo2o1kF8Ui1E+F/5NiOe0+ePOH+/fsA
1619
VKpUiXLlymlUmDbJFoYkZd/ly2LzpYMHwdFR37UpgK5ehTVrRLdVvXqiy6pLF8jEGPGrN6+4+Ogi
1620
p8NOczrsNGfCzmBW1EwdPJpWaIr9B/YYqFL3OcoxDEmSNLZ3r1jUd/48WFnpuzYF1OvXsHu3CB5B
1621
QdCnjwgeWZj//HYc5EzYGc6EneF02Gki4iJobN2YphWa0vfDvuqBdBkwJEnS2E8/iT00fH2haFF9
1622
16aAu3cP1q4VKYfLlROBw80NTEyyfKmIuAjOPjzLmbAz9LLvhYOlgwwYkiRlj6KIH7UqlVhKoOfd
1623
CySA5GQ4dky0Oo4dg44dxVhHixbZmtqmk4AxbNgw2rVrx8cff0zJkiU1rpyupPehzczMePHihR5q
1624
JBUUpqamPH/+XN/V0Lr4eHB2hu7dxeI+KReJjBTjHGvWiEHzgQPFo2LFLF9KJwHj3LlzHD58mOPH
1625
j2NkZESbNm1o27YtdevW1aggbUvvQ8uWh6Rr+fkee/RIzJxasQI6dNB3baQ0FAUCA2HdOrFs/6OP
1626
xCyrLl0y3Zeo8y6pyMhIjh49iqenJ1euXMHBwYF27drRs2dPjQrVBhkwJH3J7/fYuXMi55SvL9So
1627
oe/aSOl6/VqsJF+3Tqzx6NlTBI+GDd/bp5ijYxiKohAQEMCRI0eYMmWKRoVqgwwYkr4UhHts7VqY
1628
O1fMnNJgrFXKaWFhsHGjGCg3NhbdVX37vjNhmBz0zsRxSdKWgnKPjRkj0qLv2yd368szFAVOnxaB
1629
Y+dOsRHKwIFiwPyftR0FNmC8a6V3QfmfWdKfgnKPvXkj8uY1aQI//qjv2khZFhcn5kqvXw+XL+Mz
1630
ZQo+0dG6X+mdG8kWhqQvBekei4iABg3g11/F7Ckpj7p/H0qXBhMT3bYwoqKiOHv2LKGhoahUKmxs
1631
bGjSpAmlS5fWqEBtkQFD0peCdo8FBIgceT4+YG+v79pI2ZWd+zfd1R9+fn506tQJZ2dnPDw8ePDg
1632
AaGhoWzbtg0nJyc6derEqVOnNK60lPvcu3dP31VIIzw8nFevXum7GgXaRx/B/Pli5mZUlL5rI+lT
1633
2ry6/9i9ezfz58+nWrVq73z91q1brFixgubNm+usclLOCQkJ4fz581TOIGNmTjM3N2f27NnMkDm4
1634
9ap/fzFzs08f2L9f7qFRUL23SyolJYUdO3bodb1FevJ6l5SHhwcLFiwgODiY4sWLU7lyZQYMGMDI
1635
kSP1Up9JkyYxd+5cnVx7z549XL9+HQMDA6ysrOjXr987z9u6dSvh4eFcuHCBrl274vZPzu2LFy9y
1636
48YN+vfvr5P6ZVVeuce07c0baNVKPKZP13dtJE1l6/5VMlC/fv2MTtGL9KqeiY+kd/PmzVMsLCyU
1637
nTt3KrGxsYqiKMqlS5eUPn36KAkJCTlen6CgIGXRokU6uXZUVFSqe6hx48ZKREREmvNu376trkNE
1638
RIRiYmKihISEqF/v16+fTuqnibxwj+lKeLiiWFkpysGD+q6JpKns3L8ZNixbt27NvHnzCAsL4/nz
1639
5+qHpJno6GimT5/O8uXL6datG8WLFwegXr16bN68GWNjYwDmzJmDra0tpUqVwt7enj179qivYWBg
1640
QEhIiPr5wIEDmTZtmvr53Llzsba2plSpUtSoUYPjx4+/9/iBAwdo2bKlTj6vr68vtWrVUj+vW7cu
1641
J06cSHNecHAwP//8MwBly5bF1taWgIAA9evm5ubcuXNHJ3WUMq9cObH3z8CBcPeuvmsj5bR0xzDe
1642
8vDwQKVSsXTpUvUxlUqV6gtLyryzZ8+SkJBA586d33uera0tp06doly5cvz555/07duXu3fvYmGR
1643
dkctlUql3iz+5s2bLF26FH9/f8qVK8eDBw9ISkpK9ziILp/Jkydn6XOEhISwatWqdF9v3LgxnTt3
1644
5uHDh5j8a6mwiYkJt2/fTnP+p59+yuHDhwGRTSA8PBxbW1v163Xr1iUgICDVMUk/mjWDadPENNsz
1645
Z6BY1ncJlfKoDANGaGhoDlQjZ2krdbMm3YCRkZGULVsWg3+NGjZt2pQbN26QkJDAkSNHcHJy4rPP
1646
PlO/3rNnT3766ScuXLhAx44d06mLqIyhoSEJCQkEBwdTpkwZKv6TzfLOnTvvPA7w6tUrdcB569at
1647
W0ydOpWIiAj8/f1xcXGhffv2jBgxAoAqVarw008/Zfh5o6KiKPKv3cOMjY2JjY1Nc56RkRG1a9cG
1648
4ODBgzRo0IB69eqpXzc1NeXWrVsZlifljNGjRdqQkSPFujCZDr1gSLdLysfHJ8M3v6trIS9QFO08
1649
NFGmTBkiIyNJSUlRHztz5gwvXrygTJky6i/+jRs34uDggKmpKaamply7do3IyMgMr29ra8vChQuZ
1650
MWMGFhYW9O7dW/1r/V3HAZKTk1Nd4/nz54wYMYKNGzdy4sQJWrVqxebNm9XBIitKliyZaoAtPj4e
1651
MzOzdM+Piopi/fr1bN68OdXxokWLkpiYmOXyJd1QqWDlSrFG4z0NTSmfSbeFceDAASZOnMjHH39M
1652
gwYNsLS0JCUlhSdPnuDv74+Xlxeurq64urrmZH3zvCZNmlC4cGH27NlDt27d3nnO/fv3GTZsGMeP
1653
H6dJkyaoVCocHBzUX7zFihVLtTYhPDycChUqqJ/37t2b3r178/LlS4YPH86kSZPYuHFjuscLFUp9
1654
GyxdupRRo0apWwYJCQkU+0+/Q2a7pKpWrYq/v7/6eGRkJPXr13/nexRFYc6cOaxevZoSJUpw//59
1655
KlWqBIixn/cFGinnFS8u0hU1bw7164sV4VL+lm7AmDdvHi9fvmTv3r0cPXqUBw8eAFCpUiWaN2/O
1656
lClTKFGiRI5VNL8wMTFh+vTpuLu7oygKn3zyCcWLF+fKlSvExcUBEBcXh0qlomzZsqSkpLBx40au
1657
Xbumvka9evXYsmULs2fP5tixY/j6+uLo6AiIrqSHDx/SrFkzChcuTJEiRVAUJd3jAOXKlSM2Nlb9
1658
3/Ply5fqgerg4GDs7e0xMjJK9Tky2yXl7OzMxIkT1c8DAwPV03fv3r1LlSpV1N1hixcvpkePHrx+
1659
/ZoLFy4QHx+vDhjh4eHUrFkz639wSafs7MTeGZ99JlobZcrou0aSTmV/kpZu7NmzR/niiy+UXr16
1660
KUePHk3zenpVz8UfKZUtW7Yojo6OSrFixRRzc3OlUaNGyqpVq5TExERFURRlypQpipmZmVK2bFnl
1661
q6++UlxcXJQ1a9YoiqIo/v7+ir29vVKyZEmlX79+yueff65MmzZNURRFuXLliuLo6KiULFlSMTMz
1662
Uzp27KiEh4ene1xRFGXNmjWKt7e3um4hISHKwoULlR07digLFy5U3rx5k63PunHjRuX7779XZs6c
1663
qWzevFl93MHBQQkMDFQURVH8/PwUAwMDRaVSKSqVSjEwMFAePnyoPnfIkCFKfHx8tuqhLXnlHstJ
1664
X3+tKO3aKUpysr5rImUkO/dvuu88e/as8uGHHyrFihVTGjdurAQHB2tcSHa8ePFCGTJkSJrjeT1g
1665
5CYvXrxQpkyZou9qpCs+Pl4ZP368vquhJu+xtBITFaVZM0X54Qd910TKSHbu33QHvUeNGsW8efN4
1666
9uwZX331FePHj9eoBTN48GAsLCyoU6dOquOenp7UqFGDatWqvXeF8ezZsxk9erRGZUuZY2JiQtmy
1667
ZTM1qK4PHh4eDB8+XN/VkN7DyAg8PGDxYsijc2GkTEg3YKSkpNC6dWuKFClCjx49ePr0qUYFDBo0
1668
CE9Pz1THkpOTGT16NJ6enly/fp1t27Zx48YNNm3axPjx43n8+DGKojBp0iTatWuXanqlpBvjxo1j
1669
9+7d+q5GGmFhYZiammJnZ6fvqkgZsLYWm7716QP/TMCT8pl0B72jo6PZtWuXemD0389VKlW6M3z+
1670
y8nJKc1ajgsXLmBra4uNjQ0Abm5u7N27l2+//VadZ2jRokV4e3sTExPDnTt35C9MHVOpVHzxxRf6
1671
rkYaFSpUSDUDTMrdWreGYcOgd2/w8oJCGa70kvKSdP9zOjs7s3///nSfZzZgvMujR49SfQlYW1tz
1672
/vz5VOeMHTuWsWPHvvc6/85g+t+d9yRJ0o9p08QuoTNnwvff67s2ko+PT6bW1WVGugFj/fr1Wing
1673
Xf67qlhTMuW1JOU+hoawebNYm+HkJLZ5lfTnvz+mZ86cqfG10g0Y8+fPf+8X+1dffaVxoVZWVoSF
1674
hamfh4WFYW1tneXrzJgxQ7YsJCkXsrCALVtE11RAAJQvr+8aSdpoaaS7H8aMGTNQqVTcvHmTixcv
1675
0qlTJxRF4cCBAzg6OqZJ3fA+oaGhdOzYkatXrwKQlJSEnZ0d3t7elC9fHkdHR7Zt25alhVl5fT8M
1676
Ke+S91jmzZ4Nx46Bt7ccz8gtdLqnt5OTE4cOHaJkyZKAWAX86aef4ufnl6kCevfuzcmTJ3n27Bkf
1677
fPABs2bNYtCgQRw+fJgvv/yS5ORkhgwZwnfffZe1isuAIemJvMcyLzkZ2rWDRo3keEZukZ37N8OY
1678
//Tp01RpIYyMjLI0xXbbtm3vPN6uXTvatWuX6eu8i+ySkqTczdAQNm0S4xkuLmK3Pkk/dNol9dYP
1679
P/zAH3/8Qbdu3VAUhT179tCrV68s75+gbbKFIemLvMeyzssLBgyAwEAxviHpj067pAACAgLw8/ND
1680
pVLh7OyMg4ODRoVpkwwYkr7Ie0wzU6fChQvg6QkGGe71KemKzgNGbiQDhqQv8h7TTFISuLqKMQ09
1681
d1AUaNm5f/N0nJ8xY4bWFqTkZ/fu3dN3FfKE8PDwVPuMSNpVqBBs3Qq//QZnz+q7NgWPj49Ptteu
1682
yRZGLlO7dm2WLVuGs7OzVq4XEhLC+fPn6d27t1aul58lJSUxe/bsDP+nyuv3mL7t3QtffgmXLsG/
1683
tnuXckiBbWHkVTY2Nnh7e6ufe3h4YGZmhp+fH9euXdNasABYuXKlzoLFnj17+PHHH5kzZw6bNm1K
1684
97ygoCAmTJigkzpoWmbVqlUpXLgwFhYWbNy4EYBChQrRvn179XNJNzp3hvbtRc4pGXfzFrmURg9U
1685
KpV6Ff2GDRv4+uuvOXToEI0bN9ZqOZcvX9ZoBX1mREdH8/333xMQEACIrWfbtWtH2bJlU53366+/
1686
curUKUqXLq2TerxLZsr89ttvadOmDeXLl0+1RW3Dhg1ZvHgx/fv3z4mqFljz5om1GatXQy7MeSml
1687
I0+3MPLyGIaiKKxcuZIJEyZw9OhRdbD4b+vDxsaG+fPnU7duXUxMTHBzcyMhIQEQ2506ODhQqlQp
1688
evbsSa9evZg2bZr6vQcOHKBly5Y6qb+vr696G1eAunXrcuIdGyF89dVXdO7cWSd1SE9myjQ2NqZi
1689
xYpp9jMHMDc3586dO7qqngQUKSL2z5g8GW7c0HdtCgZtjGHk6RZGXk4+uGzZMk6fPs3x48dTbS71
1690
79bH2+fbt2/nyJEjFC5cmGbNmrF+/XoGDRpE165dmTBhAu7u7uzbtw83NzcmTZqkfu/FixezvF4m
1691
JCSEVatWpft648aN6dy5Mw8fPsTkXx3QJiYm3L59+53vyW5/f2brlJUyL168SEJCAjExMVSvXp1O
1692
nTqpX6tbty4BAQHY2tpmq97S+9WsCT/+KPJNnTsngoikO28XOesk+WB+ppqpnWy5ynTNvggVRcHL
1693
y4uWLVtSu3btDM8fO3Ys5cqVA6Bjx44EBQVx7tw5kpOTGTNmDABdu3bF0dEx1ftevXqVJoHkrVu3
1694
mDp1KhEREfj7++Pi4kL79u0ZMWIEAFWqVOGnn37KsE5RUVEU+df/4cbGxsTGxr7z3IyyE8fExDB0
1695
6FACAwPp2rUrv/zyC2FhYYSFhdG0adNM1ykrZbZq1YquXbsCUK9ePZydndUB0NTUlFu3bmWpPEkz
1696
Q4eKdRnffQcLFui7NlJGCmTA0PSLXltUKhUrVqzg+++/Z+jQoaxZs+a9578NFgDFihXj8ePHhIeH
1697
Y2Vlleq8ChUqpPplnZycnOr158+fM2LECA4dOkSRIkXo0qULGzZs0Gh8oWTJkjx79kz9PD4+Hot0
1698
lvBm9Gt/48aNLF68GAsLC/bs2cOZM2d48uRJtvZcyajMf7dITE1N8fHxoUuXLgAULVqUxMREjcuW
1699
Mk+lglWroF49kQY9m9mCJB0rkAEjN7CwsMDb25sWLVrg7u7OsmXLsvR+S0tLHj16lOrYgwcPUnWj
1700
/Ld/funSpYwaNUrdMkhISKBYsWKpzsls90/VqlXx9/dXH4+MjKR+/frvfE9Gv/ZHjhyJoaEhAF26
1701
dGHOnDmp8oNp0iX1vjI3b97Mvn37+PPPPwGIi4tL9beKjo7GzMzsvXWWtMfMTOSb6t1bTLWVqUNy
1702
rzwdMPJ68kFLS0t10Pjqq6/49ddfM3zP21/OTZo0wdDQkCVLljBixAgOHjzIxYsXUw1ylytXjtjY
1703
WEqUKAGITMNvB6qDg4Oxt7dPlVgSMt8l5ezszMSJE9XPAwMDmTt3LgB3796lSpUq6i/td/3av337
1704
NlWrVsXAwEAdLN4KDQ1NNWNMky6pd5X5tl42NjbqLrhXr14RERGR6u8WHh6epVT7Uva1aAGDB8Og
1705
QXDwoGh5SNqljeSDeX6WVF4NFm9VqFCB48ePs2PHDiZPnpzhr/G3g+JGRkbs2rWLNWvWYGpqypYt
1706
W3XXUlUAABPVSURBVOjQoQPGxsbqc1u0aMGFCxfUz0eOHMnRo0fZuXMnXl5ezJkzR+N6Fy9enIkT
1707
JzJ79mxmzZrFxIkT+eCDDwDo0aMHQUFBACxZsoS1a9fi4+PDzJkziYmJAaBTp04cPXr0nddu2LCh
1708
xvV6X5lv69W8eXPCw8NZuHAhU6ZMwcPDI1VLKygoiGbNmmWrDlLWTZ8OkZGwdKm+a5I/ubi4yJXe
1709
mT1eEDRq1Ah3d3cGDBgAiIHpefPmMXv2bD3XLK3ExETOnz+Pk5NTquP+/v48ffqUTz/9VC/1ev36
1710
NZMnT35va68g32O6dvs2NG0KPj5gb6/v2uRPcqV3AeXr68uTJ09ISkpiw4YNXLt2jbZt26pfNzEx
1711
oWzZskRGRuqxlu+2e/dumjZtmub49evXadGihR5qJHh4eDB8+HC9lV/QVasGc+bA55/DP8uNpFxE
1712
Bow87ObNm9SrVw9TU1MWLFjAjh070sxUGjduHLt379ZTDdPXq1evNGMXAP3796d48eJ6qJHYW97U
1713
1BQ7Ozu9lC8JgweDra2YaivlLnm6S2r69OlpBr1ld4Gka/Ie071nz6BuXdiwQe7Spy1vB71nzpwp
1714
98PI6LgkaYu8x3LGkSMiz9Tly2Bqqu/a5B9yA6VMHJckbZH3WM4ZOxaePoVt2+RUW22Rg96SJOVL
1715
c+fClSti4yVJ/2QLQ5KySN5jOevSJZE2JCAAKlbUd23yPtnCkCQp33JwgK++goEDISVF37Up2GTA
1716
kCQp15s4UazLWLRI3zUp2GSXlCRlkbzH9OPuXWjcGE6ehH/t3SVlUYHtksrLO+5JkpQ1VavCDz9A
1717
v34gs89nnTZ23JMtDEnKInmP6Y+iQMeOUL8+zJql79rkTQW2hSFlzr179/RdBb0LDw/n1atX+q6G
1718
lE1vN1xauRIuXtR3bQoeGTBymdq1a+Pr66u164WEhHDu3DmtXS+vMjc35+eff9Z3NSQtsLQUg9/9
1719
+0N8vL5rU7DILik9sLGxYc2aNbT6J0mOh4cH7u7u7N27N0267+yaNGmSemMjbduzZw/Xr1/HwMAA
1720
Kysr+vXrl+acrVu3Eh4ezoULF+jatStubm46qcu/7d27l9jYWO7evUvZsmVxd3cH4OLFi9y4cYP+
1721
/ftn6/p54R4rCHr1AisryMS+Y9K/ZOv+VfKo9KqeFz6SjY2N4u3trSiKoqxfv14pU6aMcvbsWa2X
1722
ExQUpCxatEjr11UURYmKilLq16+vft64cWMlIiIi1Tm3b99Wlx8REaGYmJgoISEhOqnPWy9evFAK
1723
Fy6sxMfHKykpKYqZmZkSGhqqfr1fv37ZLiMv3GMFQWSkopQvryg+PvquSd6SnftXdknpiaIorFy5
1724
kgkTJnD06FH1lqQ2NjZ4e3urz7OxsWH+/PnUrVsXExMT3NzcSPhno4DAwEAcHBwoVaoUPXv2pFev
1725
XkybNk393gMHDqTaelSbfH191du9AtStW5cTJ06kOic4OFjdDVS2bFlsbW0JCAjQSX3eMjExISAg
1726
gCJFiqBSqUhKSkr1a8rc3Jw7d+7otA5SzihTRoxlDBoEsbH6rk3BkKf39M7Lli1bxunTpzl+/Dh1
1727
6tRRH3+7Beu/n2/fvp0jR45QuHBhmjVrxvr16xk0aBBdu3ZlwoQJuLu7s2/fPtzc3Jg0aZL6vRcv
1728
XmTy5MlZqldISAirVq1K9/XGjRvTuXNnHj58iImJifq4iYkJt2/fTnXup59+yuHDhwERIMPDw7G1
1729
tc1SfbJSp7fs/9mq7dSpU7i4uGBjY6N+rW7dugQEBGhUDyn36dABdu6Eb76B5cv1XZv8r2AGDG2l
1730
vdSwH1BRFLy8vGjZsiW1a9fO8PyxY8dSrlw5ADp27EhQUBDnzp0jOTmZMWPGANC1a1ccHR1Tve/V
1731
q1dp9gi/desWU6dOJSIiAn9/f1xcXGjfvj0jRowAoEqVKvz0008Z1ikqKooiRYqonxsbGxP7n595
1732
RkZG6s938OBBGjRoQL169dJcKyYmhqFDhxIYGEjXrl355ZdfCAsLIywsjKZNm2a6Tv+2a9cutm/f
1733
zvz581MdNzU15datW1m6lpS7LVgAH34Ix45B69b6rk3+VjC7pBRFOw8NqVQqVqxYwc2bNxk6dGiG
1734
578NFgDFihUjNjaW8PBwrKysUp1XoUKFVN0vycnJqV5//vw5I0aMYOPGjZw4cYJWrVqxefNmdbDI
1735
ipIlS6YqKz4+HjMzs3eeGxUVxfr169m8efM7X9+4cSOLFy/mzp07NGvWjDNnznDx4sV3buGaWd26
1736
dWPVqlW0a9eO0NBQ9fGiRYuSKFd95SsmJmKq7dChEBOj79rkb3m6hTFjxow0O+7lFRYWFnh7e9Oi
1737
RQvc3d1ZtmxZlt5vaWnJo0ePUh178OBBqq6WQoVS/+ddunQpo0aNUrcMEhISKFasWKpzMtv9U7Vq
1738
Vfz9/dXHIyMjqV+/fprzFUVhzpw5rF69mhIlSnD//n0qVaqU6pyRI0eqt2vt0qULc+bMSfXfNCtd
1739
Ugf/v727j2nqeuMA/oVamEHmQMaL2LFRDC8Fyh8IqwqELAriQrJMhvwxGUOmTsnGshCHWdTFGeLc
1740
zwgue3XMsEycTKcLozPbECMwOuzGNmDIELCobCCIjq200PP7o+PKq15K29uW55M0pL23t0+fXO7T
1741
e88951RUYP/+/aipqcGiRYvg7e2N8vJyvPrqqwCAwcHBGQsbsV9JSUBysnGQwo8+Ejoa2zQ2495c
1742
2H3BsGd+fn5c0XjllVfwPx73B479qlcoFBCJRDhy5Ai2bt2KiooK/PjjjxMauX19ffH3339j0aJF
1743
AIA7d+5wDdVNTU2QyWQQi8UTts/38k98fDzy8/O552q1mrt9t729HYGBgXByckJxcTHS0tKg1Wqh
1744
Uqnw77//IiAgAG1tbZBKpXB2dp4yt3dnZyd3E8BsYgIAkUjEFRvGGDQaDSIjI7nlN27cQGhoKK9t
1745
Efty8KDx0pRSaSweZKKxH9d79+41eRt2XTAcgUQiwffff4/4+Hjuzp57GWsUF4vFOHXqFDZv3ozX
1746
XnsN69atw5NPPgkXFxdu3YSEBKhUKq6IbNu2DWfPnkVzczO6u7tRWFhoctxubm7Iz8/Hvn37YDAY
1747
kJ+fD29vbwBAWloajh49iqGhIeTl5XFFzsnJCVevXgUApKam4tChQ0ie5j97xYoVJseVnJyMK1eu
1748
oLi4GF1dXdi1axfWrl3LLf/55595XQYk9sfd3Xh2kZUF/PorsHix0BE5Huq450BiY2Px4osvIjMz
1749
E4Cx7eDgwYPYt2+fwJFNpdPpUF9fP6WjYkNDA/766y+kpKSY/TO1Wi0KCgp4ncndy3zex+zB1q3A
1750
6KixXYNMRWNJzVMXLlxAT08PRkZGcOzYMfz2228TfrE/9NBD8PLyQl9fn4BRTu/06dPTNmo3Nzcj
1751
ISHBIp9ZVlaGLVu2WGTbxHYcOGC8Y+qbb4SOxPFQwbBjra2tiIqKgoeHBw4dOoTy8nL4+PhMWOel
1752
l17C6dOnBYpwZunp6VPaLgBg06ZNcHNzM/vnaTQaeHh4IDg42OzbJrblwQeNZxc5OcDgoNDROBa6
1753
JEXILNE+Zh9eeMH494MPhI3D1sxl/6WCQcgs0T5mHwYHgYgIoKQE+G+cTwJqwyCEkCkWLwbee894
1754
aYrGmjIPOsMgZJZoH7MvmZnG4lFUJHQktoEuSfF4nRBzoX3MvvT3A+HhwIkTgJmnm7FLdEmKEEJm
1755
4OkJvPMOkJ1NM/TNlcOdYXh6emJgYECAiMh84eHhgf7+fqHDILOUlgYEBQGzHPjY4TjkJanff/8d
1756
hw8fxs2bN5GUlITs7OwJy+myACFkNnp67o41Nc04mfOGQ16SCgkJwbvvvouysjJ8Q10272muI1A6
1757
EsrFXZSLu86fPw9fX+Ctt4yXpvR6oSOyTxYvGM8//zx8fHwmzCoHAEqlEiEhIVi+fDk3yulkX331
1758
FdavX4+NGzdaOky7RgeGuygXd1Eu7hrLxaZNgI8PMGleLcKTxQtGVlYWlErlhNdGR0exY8cOKJVK
1759
NDc34/jx42hpaUFpaSny8vJw/fp1AMbZ5SorK3Hs2DFLh0kImQecnIzzgL/9NtDaKnQ09sfiw5vH
1760
xcVNmPEMAFQqFYKCgri5ljdu3IgzZ85g586dePbZZwEA1dXVOHXqFLRaLRITEy0dJiFknggIAF5/
1761
3Th0SFUV4GyzF+ZtELOCjo4OFh4ezj0/efIk27x5M/e8tLSU7dixY1bbBEAPetCDHvQw4WEqQSZQ
1762
ut8kQXwwukOKEEKsSpCTMX9/f2g0Gu65RqPBsmXLhAiFEEIIT4IUjOjoaLS1taGzsxM6nQ4nTpxA
1763
amqqEKEQQgjhyeIFIyMjAytXrsTly5chkUhQUlKCBQsW4MiRI0hKSkJYWBjS09MRGhpq6VAIIYTM
1764
hcmtH1ZUWVnJgoODWVBQECssLJx2ndzcXBYUFMQiIyOZWq22coTWc79cfPrppywyMpJFRESwlStX
1765
ssbGRgGitDw++wRjjKlUKiYSidgXX3xhxeisi08uqqqqWFRUFJPJZCwhIcG6AVrR/XLR29vLkpKS
1766
mFwuZzKZjJWUlFg/SCvJyspi3t7eE244mmy2x02bLxgjIyNMKpWyjo4OptPpmFwuZ83NzRPWqaio
1767
YOvWrWOMMfbDDz+w2NhYIUK1OD65qK2tZbdu3WKMGf95HDEXfPIwtl5iYiJbv349Ky8vFyBSy+OT
1768
i4GBARYWFsY0Gg1jzHjQdER8crF79262c+dOxpgxD56enkyv1wsRrsVduHCBqdXqGQuGKcdNm78D
1769
eXyfDbFYzPXZGO/s2bPIzMwEAMTGxuLWrVv4888/hQjXovjkQqFQYPHixQCMueju7hYiVIvikwcA
1770
KC4uxoYNG/Dwww8LEKV18MnFZ599hqeffpq7scTLy0uIUC2OTy78/Pxw+/ZtAMDt27exZMkSLFgg
1771
yM2iFhcXFwcPD48Zl5ty3LT5gnHt2jVIJBLu+bJly3Dt2rX7ruOIB0o+uRjv6NGjSElJsUZoVsV3
1772
nzhz5gy2bdsGwDy3ctsiPrloa2tDf38/EhMTER0djdLSUmuHaRV8cpGTk4OmpiYsXboUcrkchw8f
1773
tnaYNsOU46bNl1a+/+hsUr8MRzxAzOY7VVVV4eOPP0ZNTY0FIxIGnzy8/PLLKCws5EbmnLx/OAo+
1774
udDr9VCr1fjuu+/wzz//QKFQ4PHHH8fy5cutEKH18MnF/v37ERUVhfPnz6O9vR1r1qxBY2Mj3N3d
1775
rRCh7ZntcdPmCwafPhuT1+nu7oa/v7/VYrQWvv1XfvnlF+Tk5ECpVN7zlNRe8cnDpUuXuEEr+/r6
1776
UFlZCbFY7HC3b/PJhUQigZeXFxYuXIiFCxciPj4ejY2NDlcw+OSitrYWu3btAgBIpVI89thjaG1t
1777
RXR0tFVjtQUmHTfN1sJiIXq9ngUGBrKOjg42PDx830bvuro6h2zoZYxfLrq6uphUKmV1dXUCRWl5
1778
fPIw3nPPPeewd0nxyUVLSwt74okn2MjICBsaGmLh4eGsqalJoIgth08u8vLy2J49exhjjPX09DB/
1779
f3928+ZNIcK1isnDMo1nynHT5s8wxvfZGB0dRXZ2NkJDQ/H+++8DALZs2YKUlBR8/fXXCAoKgpub
1780
G0pKSgSO2jL45OKNN97AwMAAd+1eLBZDpVIJGbbZ8cnDfMEnFyEhIUhOTkZkZCScnZ2Rk5ODsLAw
1781
gSM3Pz65KCgoQFZWFuRyOQwGAw4cOABPT0+BI7eMjIwMVFdXo6+vDxKJBHv37oX+v4lATD1u2uyM
1782
e4QQQmyLzd8lRQghxDZQwSCEEMILFQxCCCG8UMEghBDCCxUMQkyUnp6O9vb2Ka9/8sknyM3NNWmb
1783
w8PDiI+Ph8FgmGt4hJgdFQxC7oNN01P8jz/+wNDQEKRSqVk/y9XVFXFxcfjyyy/Nul1CzIEKBiHT
1784
6OzsRHBwMDIzMxERETFljJ2ysrIJvcZLSkoQHByM2NhY1NbWcq/39vZiw4YNiImJQUxMDLest7cX
1785
a9asQXh4OHJycvDoo4+iv78fAJCamorjx49b4VsSMktm61JIiAPp6Ohgzs7OrL6+ftrlycnJ7NKl
1786
S4wxxq5fv84eeeQR1tfXx3Q6HVu1ahXLzc1ljDGWkZHBLl68yBgz9sIPDQ1ljDG2fft2br4GpVLJ
1787
nJycuB7HWq2WLV261KLfjxBT2HxPb0KEEhAQgJiYmGmXdXV1wc/PDwBQX1+PxMRELFmyBICxbePy
1788
5csAgG+//RYtLS3c++7cuYOhoSHU1NRwl52SkpImjPnl6uoKg8EArVaLBx54wCLfjRBTUMEgZAZu
1789
bm73XM7+a9cYGxF3/Otjo34yxlBfXw8XF5cZ3z/Tth1xxGVi36gNgxATBAQE4MaNGwCAmJgYVFdX
1790
o7+/H3q9HidPnuTWW7t2LYqKirjnjY2NAIBVq1bh888/BwCcO3cOAwMD3DrDw8MQiURwdXW1xlch
1791
hDcqGITM4F6/8FevXo2GhgYAxlnc9uzZA4VCgdWrV0Mmk3HrFRUVoaGhAXK5HDKZjBsIb/fu3Th3
1792
7hwiIiJQXl4OX19fbk6Gn376CQqFwoLfjBDT0OCDhJjgypUryM3NRUVFhUnv1+l0EIlEEIlEqKur
1793
w/bt26FWqwEABQUFWLFiBZ566ilzhkzInFEbBiEmCAwMhLu7O9rb203qi3H16lU888wzMBgMcHFx
1794
wYcffgjAeDnq4sWLePPNN80dMiFzRmcYhBBCeKE2DEIIIbxQwSCEEMILFQxCCCG8UMEghBDCCxUM
1795
QgghvFDBIIQQwsv/Af7G+nRS2XIXAAAAAElFTkSuQmCC
1796
"></img>
1797
</div>
1798
</div>
1799
</div>
1800
</div>
1801
</div>
1802
<div class="text_cell_render border-box-sizing rendered_html">
1803
<h3>
1804
  For dP(r^2) / dr^2
1805
</h3>
1806
</div>
1807
<div class="cell border-box-sizing code_cell vbox">
1808
<div class="input hbox">
1809
<div class="prompt input_prompt">In&nbsp;[14]:</div>
1810
<div class="input_area box-flex1">
1811
<div class="highlight"><pre><span class="c"># Check normalizations</span>
1812
<span class="n">r2_step</span> <span class="o">=</span> <span class="mf">0.001</span> <span class="c"># deg^2</span>
1813

    
1814
<span class="k">for</span> <span class="n">r2_max</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1000</span><span class="p">]:</span> <span class="c"># deg^2</span>
1815
    <span class="n">r2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">r2_max</span><span class="p">,</span> <span class="n">r2_step</span><span class="p">)</span>
1816
    <span class="n">pdf_gauss</span> <span class="o">=</span> <span class="n">gauss_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">)</span>
1817
    <span class="n">pdf_king_2</span> <span class="o">=</span> <span class="n">king_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">)</span>
1818
    <span class="n">pdf_king_3</span> <span class="o">=</span> <span class="n">king_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
1819
    <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">pdf_gauss</span><span class="p">,</span> <span class="n">pdf_king_2</span><span class="p">,</span> <span class="n">pdf_king_3</span><span class="p">]:</span>
1820
        <span class="n">norm</span> <span class="o">=</span> <span class="p">(</span><span class="n">r2_step</span> <span class="o">*</span> <span class="n">_</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
1821
        <span class="k">print</span> <span class="n">norm</span>
1822
</pre></div>
1823

    
1824
</div>
1825
</div>
1826
<div class="vbox output_wrapper">
1827
<div class="output vbox">
1828
<div class="hbox output_area">
1829
<div class="prompt output_prompt"></div>
1830
<div class="output_subarea output_stream output_stdout">
1831
<pre>1.00625927081
1832
0.674687757878
1833
0.966684146376
1834
1.0062630208
1835
0.991133876887
1836
1.0041752896
1837
</pre>
1838
</div>
1839
</div>
1840
</div>
1841
</div>
1842
</div>
1843
<div class="cell border-box-sizing code_cell vbox">
1844
<div class="input hbox">
1845
<div class="prompt input_prompt">In&nbsp;[15]:</div>
1846
<div class="input_area box-flex1">
1847
<div class="highlight"><pre><span class="c"># Plot PDF dP(r^2) / dr^2</span>
1848
<span class="n">r2_max</span><span class="p">,</span> <span class="n">r2_step</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.001</span> <span class="c"># deg</span>
1849
<span class="n">r2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">r2_max</span><span class="p">,</span> <span class="n">r2_step</span><span class="p">)</span>
1850

    
1851
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">gauss_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;Gauss$(\sigma=0.2)$&#39;</span><span class="p">);</span>
1852
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">king_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.1, \gamma=1.5)$&#39;</span><span class="p">);</span>
1853
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">king_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.2, \gamma=3)$&#39;</span><span class="p">);</span>
1854
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;$r^2$ (deg$^2$)&#39;</span><span class="p">)</span>
1855
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;dP(r^2) / dr^2 (deg^-2)&#39;</span><span class="p">)</span>
1856
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">);</span>
1857
</pre></div>
1858

    
1859
</div>
1860
</div>
1861
<div class="vbox output_wrapper">
1862
<div class="output vbox">
1863
<div class="hbox output_area">
1864
<div class="prompt output_prompt"></div>
1865
<div class="output_subarea output_display_data">
1866
<img src="
1867
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVFX/wPHPDAz7LooGJIqaJoqYS1oqpWhqmpob7W5p
1868
+qvnyXqszB6XrGixzazMNPNRs7Jyz0wFsdQE0XLLDVE0QJBF9m3u748royMMm8yA8H2/Xvc13Dvn
1869
3vvlvmC+c8859xyNoigKQgghGixtbQcghBCidkkiEEKIBk4SgRBCNHCSCIQQooGTRCCEEA2cJAIh
1870
hGjgzJYIxo8fj5eXFx06dDBs279/P926dSMoKIiuXbsSFRVlrtMLIYSoJLMlgnHjxrF161ajbTNm
1871
zOD111/n4MGDzJs3jxkzZpjr9EIIISrJbImgV69euLu7G21r1qwZGRkZAKSnp+Pt7W2u0wshhKgk
1872
jTmfLI6Li2PIkCEcPnwYgHPnznHvvfei0WjQ6/Xs3bsXX19f44A0GnOFI4QQ9Vp1P84t2lg8YcIE
1873
Pv74Y86fP88HH3zA+PHjyyynKIosisLs2bNrPYa6ssi1kGsh16L85WZYNBHs37+f4cOHAzBy5Ej2
1874
799vydMLIYQog0UTQatWrdi1axcAO3fupE2bNpY8vRBCiDJYm+vAoaGh7Nq1i5SUFHx9fZk3bx5f
1875
fPEF06ZNIz8/H3t7e7744gtznb5eCA4Oru0Q6gy5FtfItbhGrkXNMGtjcXVoNJqbru8SQoiG5mY+
1876
O812RyBEQ+Xh4UFaWlpthyHqKXd3d1JTU2v0mHJHIEQNk79hYU6m/r5u5u9OxhoSQogGThKBEEI0
1877
cJIIhBCigZNEIIQQDZwkAiGEaOAkEQgh6oyzZ8/WdgilJCQkkJOTU9thmJUkAiFEnRAbG8u+fftq
1878
O4xSGjduzDvvvFPbYZiVJAIhGqg1a9bQvXt3nJyc8PLy4u677+azzz6rtXgWL15MaGioWY69bt06
1879
3nzzTcLCwvjf//5nstzq1atZsGABY8aMYc2aNQBYW1szePBgVqxYYZbY6gSljgGUv5P/ru0whKi2
1880
OvhvVcp7772neHl5KT/88IOSlZWlKIqiHDx4UHn00UeV/Px8i8dz6NAh5eOPPzbLsdPT05XOnTsb
1881
1u+++24lOTm5VLlTp04ZYkhOTlbc3NyU2NhYw/uPP/64WeKrKlN/Xzfzd1cn7wimb5te2yEIUW9l
1882
ZGQwe/ZsPvvsM0aMGIGjoyMAnTp1YuXKldjY2AAQFhZGq1atcHFxoX379qxbt85wDK1WS2xsrGH9
1883
qaee4rXXXjOsv/322/j4+ODi4kLbtm3ZuXNnuds3bdrE/fffb5bfNzIykjvvvNOwHhgYSHh4eKly
1884
R48eNVQBeXp60qpVKw4cOGB4v3Hjxpw+fdosMda2OjnWUG5hbm2HIES9tXfvXvLz83nooYfKLdeq
1885
VSt+++03mjZtynfffcdjjz3GmTNn8PLyKlVWo9EYZhc8ceIEixYtIjo6mqZNm3L+/HmKiopMbgeI
1886
iopi5syZVfo9YmNjWbJkicn37777bh566CEuXLiAm5ubYbubmxunTp0qVX7QoEH8/PPPgDo5VkJC
1887
Aq1atTK8HxgYyIEDB4y21Rd1MxEUSSIQ9VdNzcZa3eGMUlJS8PT0RKu9ViHQs2dPjh8/Tn5+Pr/8
1888
8gu9evVi5MiRhvdHjx7NW2+9xf79+xkyZIiJeNSArKysyM/P5+jRozRq1Ijbb78dgNOnT5e5HSAn
1889
J6fUNLUnT55k1qxZJCcnEx0dTXBwMIMHD2bKlCkAtGzZkrfeeqvC3zc9PR07OzvDuo2NDVlZWaXK
1890
6XQ6AgICANi8eTNdunShU6dOhvfd3d05efJkhee7FdXJqqGcwvrdVUs0bIpSM0t1NWrUiJSUFPR6
1891
vWHbnj17SEtLo1GjRoYP9BUrVhAUFIS7uzvu7u4cOXKElJSUCo/fqlUrPvzwQ+bMmYOXlxehoaGG
1892
b9dlbQcoLi42OkZqaipTpkxhxYoVhIeH07dvX1auXGlIAlXh7OxsNBhbbm4uHh4eJsunp6ezfPly
1893
Vq5cabTd3t6egoKCKp//VlA37wikakgIs+nRowe2trasW7eOESNGlFnm3LlzPP300+zcuZMePXqg
1894
0WgICgoyfKA6ODgY9a1PSEjA19fXsB4aGkpoaCiZmZlMnjyZl156iRUrVpjcbm1t/FG0aNEipk2b
1895
Zvgmn5+fj4ODg1GZylYN+fv7Ex0dbdiekpJC586dy9xHURTCwsL48ssvcXJy4ty5czRv3hxQ21bK
1896
SyC3MrMlgvHjx7N582aaNGnC4cOHDdsXLlzIp59+ipWVFYMHD+btt98uta9UDQlhPm5ubsyePZup
1897
U6eiKAr9+/fH0dGRv/76i+zsbACys7PRaDR4enqi1+tZsWIFR44cMRyjU6dOrFq1ivnz5/Prr78S
1898
GRlJt27dALVK58KFC9xzzz3Y2tpiZ2eHoigmtwM0bdqUrKwsnJycAMjMzDQ08B49epT27duj0+mM
1899
fo/KVg317t2bGTNmGNZjYmIMnztnzpyhZcuWhmqphQsXMmrUKPLy8ti/fz+5ubmGRJCQkEC7du2q
1900
fsFvBdXub1SByMhIJSYmRgkICDBs27lzp9KvXz+loKBAURRFuXTpUqn9AMXjbQ9zhSWE2Znx36pG
1901
rVq1SunWrZvi4OCgNG7cWOnevbuyZMkSw//nq6++qnh4eCienp7K9OnTleDgYGXp0qWKoihKdHS0
1902
0r59e8XZ2Vl5/PHHlUceeUR57bXXFEVRlL/++kvp1q2b4uzsrHh4eChDhgxREhISTG5XFEVZunSp
1903
smPHDkNssbGxyocffqisXbtW+fDDD5XCwsKb+l1XrFihvP7668rcuXOVlStXGrYHBQUpMTExiqIo
1904
yu7duxWtVqtoNBpFo9EoWq1WuXDhgqHshAkTlNzc3JuKoyaY+vu6mb87s05MExcXx5AhQwx3BKNH
1905
j2bKlCnldhPTaDTYz7cn51VpJxC3JpmYpurS09N57733mD9/fm2HUqa8vDxmzpzJ+++/X9uhmGVi
1906
Gou2EZw6dYrIyEhmzpyJnZ0d7733Hl26dClVLnd7LnMK5wDq5NQyQbUQ9Zubmxuenp6GHk11zZo1
1907
a5g8eXJth2EkIiKCiIiIGjmWRe8IOnTowP33389HH31EVFQUY8aMMXooBdSsZvu6LWkvpWGvszdX
1908
aEKYjdwRVI+iKHz55ZdMmjSptkMxEh8fT0xMTIXPXVjKLX9H4OPjY+il0LVrV7RaLZcvX6ZRo0ZG
1909
5Rx0DuQW5UoiEKIB0Wg0dS4JAPj6+hr1iKqPLPocwbBhwwyPlJ88eZKCgoJSSQDAXmcvzxIIIYSF
1910
mO2OIDQ0lF27dnH58mV8fX2ZN28e48ePZ/z48XTo0AEbGxuTo/nZW9vLswRCCGEhZksE33zzTZnb
1911
yxsCtkRJ1ZAQQgjzq5NDTEjVkBBCWE7dTARSNSSEEBZTJxOBVA0JIYTl1MlEIFVDQghhOXUzEUjV
1912
kBBCWEydTARSNSSEEJZTJxOBVA0JUb+cPXu2tkO4JSQkJBjN82ApdTMRSNWQELUmICCAyMjIGjte
1913
bGws+/btq7Hj1WeNGzfmnXfesfh562QikKohIczLz8+PHTt2GNbXrFmDh4cHu3fv5siRI/Tu3bvG
1914
zrV48WJCQ0Nr7HjXW7duHW+++SZhYWHlPqx66NAhXnzxRbPEUN1z+vv7Y2tri5eXl2GUBWtrawYP
1915
Hmxy1AVzqZNTVdpb25OUnVTbYQhRb2k0GsOsXF9//TUvvPACW7Zs4e67767R8/z555/4+PjU6DFL
1916
ZGRk8Prrr3PgwAFAnYJz4MCBpYaxfv/99/ntt99wdXU1Sxxlqcw5X375ZQYMGMBtt91mNFVn165d
1917
WbhwIU888YQlQgXq6B2Bvc5e7giEMDNFUVi8eDEvvvgi27ZtMySBG+8W/Pz8WLBgAYGBgbi5uTF2
1918
7Fjy8/MBddrHoKAgXFxcGD16NGPGjOG1114z7Ltp06ZyJ6K6GZGRkYbpLAECAwMJDw8vVW769OkW
1919
H0K6Mue0sbHh9ttvLzVfM6hVRKdPnzZXeKXU2TsCaSMQwrw+/fRTfv/9d3bu3EmHDh0M26+/WyhZ
1920
//777/nll1+wtbXlnnvuYfny5YwbN47hw4fz4osvMnXqVDZs2MDYsWN56aWXDPtGRUUxc+bMKsVV
1921
2UnpL1y4gJubm2G7m5sbp06dKnOfm50forIxVeWcUVFR5Ofnc+XKFdq0acPQoUMN7wUGBnLgwAFa
1922
tWp1U3FXVp1MBA46B+k1JOotzVxNxYUqQZld/Q83RVHYvn07999/PwEBARWWf+6552jatCkAQ4YM
1923
4dChQ+zbt4/i4mKeffZZAIYPH26YwL5ETk6OUVIBdQj6WbNmkZycTHR0NMHBwQwePJgpU6YAlZ+U
1924
Pj09HTs7O8O6jY0NWVlZZZa9MYYbXblyhYkTJxITE8Pw4cN59913iY+PJz4+np49e1Y6pqqcs2/f
1925
vgwfPhyATp060bt3b0Nic3d35+TJk1U6382ok4lAuo+K+uxmPsBrikaj4fPPP+f1119n4sSJLF26
1926
tNzyJUkAwMHBgX/++YeEhAS8vb2Nyvn6+hp9Ey4uLjZ6PzU1lSlTprBlyxbs7OwYNmwYX3/9dbXq
1927
752dnbl8+bJhPTc3Fy8vrzLLVvTtfMWKFSxcuBAvLy/WrVvHnj17SExMNEykVR0VnfP6Owh3d3ci
1928
IiIYNmwYAPb29hQUFFT73FVVJxOBo85REoEQZubl5cWOHTvo06cPU6dO5dNPP63S/s2aNePixYtG
1929
286fP29UnXFj/feiRYuYNm2a4Zt8fn4+Dg4ORmUqWw3j7+9PdHS0YXtKSgqdO3cuc5+Kvp0/88wz
1930
WFlZAeoEWmFhYUZzpVenaqi8c65cuZINGzbw3XffAZCdnW10rTIyMvDw8Cg35ppktkQwfvx4Nm/e
1931
TJMmTQxzFpdYsGAB//nPf0hJSSnzl3WycSKroOxbPCFEzWnWrJkhGUyfPp3333+/wn1Kvun26NED
1932
KysrPvnkE6ZMmcLmzZuJiooyahxu2rQpWVlZODk5AZCZmWlo4D169Cjt27dHp9MZHb+y1TC9e/dm
1933
xowZhvWYmBjefvttAM6cOUPLli0NH8ZlfTs/deoU/v7+aLVaQxIoERcXZ9SDqjpVQ2WdsyQuPz8/
1934
Q1VYTk4OycnJRtctISGBdu3aVel8N8NsvYbGjRvH1q1bS22Pj4/n119/pXnz5ib3dbJxIrsw21yh
1935
CSGu4+vry86dO1m7di0zZ86s8NtzSWOyTqfjxx9/ZOnSpbi7u7Nq1SoefPBBbGxsDGX79OnD/v37
1936
DevPPPMM27Zt44cffmD79u2EhYVVO25HR0dmzJjB/PnzmTdvHjNmzKBJkyYAjBo1ikOHDgHwySef
1937
sGzZMiIiIpg7dy5XrlwBYOjQoWzbtq3MY3ft2rXacZV3zpK47r33XhISEvjwww959dVXWbNmjdGd
1938
0aFDh7jnnntuKoYqUczo7NmzSkBAgNG2kSNHKn/++afi5+enXL58udQ+gBKbGqv4fehnztCEMBsz
1939
/1vVad26dVOWL19uWE9LS1NeffXVWozItPz8fCUyMrLU9qioKGXz5s21EJEqNzdXef75502+b+rv
1940
62b+7izaRrB+/Xp8fHzo2LFjueU+fe9TLkVdYk7aHIKDg43q6oQQdUdkZCRt2rTB09OTVatWceTI
1941
ER544AHD+25ubnh6epKSklLqQa/a9tNPPzFy5MhS248dO8bDDz9cCxGp1qxZw+TJkyssFxERQURE
1942
RM2ctNoppBKuvyPIzs5WunXrpmRkZCiKoih+fn5KSkpKqX0AJbsgW7Gbb2fO0IQwGzP/W9UpX3zx
1943
heLl5aU4OTkpgYGBypYtW0qV0ev1yhdffFEL0d16zp8/r6xbt67cMqb+vm7m705z9QBmERcXx5Ah
1944
Qzh8+DCHDx+mX79+hnqwCxcu4O3tzf79+w31eqDWP+r1eqxft6ZgVgFWWitThxeiTtJoNDf9AJMQ
1945
ppj6+7qZv7tKVQ1lZ2cTHx+PRqPBx8cHR0fHKp+oQ4cOJCVdGz+oRYsWHDhwoMxeQxqNBkedI9mF
1946
2bjYulT5XEIIISrPZCLIzMxkyZIlrFmzhpSUFLy8vFAUhaSkJBo1asSjjz7KpEmTDN3CbhQaGsqu
1947
Xbu4fPkyvr6+zJs3j3Hjxhner6hngqONI1kFWZIIhBDCzEwmgmHDhjF27Fg2btxY6mm9xMRENmzY
1948
wEMPPWQ0ONX1vvnmm3JPHBsbW+77TjZOZBdIF1IhhDA3s7YRVEdJPVfQ4iCWDV1GULOg2g5JiCqR
1949
NgJhTuZoI6jwgbLCwsJS25KTk6t1sqqQp4uFEMIyTCaC8PBwfHx8aNq0Kf379zeac7R///5mD8xR
1950
5yiJQAghLMBkIvjPf/7DL7/8QkpKCk8//TQhISHs3bvXYoHJMBNCCGEZJhuLCwoKaN++PQAjR46k
1951
Xbt2jBgxwjCok7lJ1ZAQQliGyURgY2NDYmKiYRzy9u3bs2PHDgYPHsyZM2fMHpgkAiGEsAyTVUNv
1952
vfUWiYmJRtt8fHzYtWsXL7/8stkDk0QgRP1xfRtjQ5WQkEBOTt2cZ8VkIggJCaFTp05G22JiYnBz
1953
c2PWrFlmD6zkyWIhhGUFBAQQGRlZY8eLjY1l3759NXa8W1Xjxo155513ajuMMlVp9NEJEyZw8OBB
1954
c8VixMnGifNXzlvkXEI0NH5+fixdupS+ffsC6oiXU6dOZf369Rw5cqRGz7V48WKztS2uW7eOY8eO
1955
odVq8fb25vHHHy9VZvXq1SQkJLB//36GDx/O2LFjzRLL9davX09WVhZnzpzB09OTqVOnYm1tzeDB
1956
g1mxYgVPPPGE2WOoijo5VSVI1ZAQ5lQyuQzA119/zQsvvMCWLVuMZuWqCX/++Sc+Pj41eswSGRkZ
1957
vP766xw4cABQZ0wbOHCg0XDXp0+f5vLly7zwwgukpKTQunVrunfvTosWLcwSE0B6ejpjxowhPT0d
1958
W1tbPD09GTx4MM2bN6dr164sXLiwziWCKs1QNnv2bHPFUYoMMSGEeSmKwuLFi3nxxRfZtm2bIQn4
1959
+fkZDR3j5+fHggULCAwMxM3NjbFjx5Kfnw+o1cVBQUG4uLgwevRoxowZw2uvvWbYd9OmTUZTMNak
1960
yMhIw7SXAIGBgYSHhxuVOXr0qKE6xtPTk1atWhkSh7m4ublx4MAB7Ozs0Gg0FBUVGT3x27hxY06f
1961
Pm3WGKqqSncEw4YNM1ccpTjaOJJZkGmx8wnR0Hz66af8/vvv7Ny5kw4dOhi2X3+3ULL+/fff88sv
1962
v2Bra8s999zD8uXLGTduHMOHD+fFF19k6tSpbNiwgbFjx/LSSy8Z9o2KimLmzJlViquyE8VfuHAB
1963
Nzc3w3Y3NzdOnTplVHbQoEH8/PPPgJr4EhISaNWqVZXiqUpMJUq63v/2228EBwfj5+dneC8wMJAD
1964
Bw5UKw5zKTcRFBUVMWnSJL766itLxWPgYutCZr4kAlEPVTDybqXdxHhGiqKwfft27r//fgICAios
1965
/9xzzxm6kg8ZMoRDhw6xb98+iouLefbZZwEYPnw43bp1M9ovJyen1EjDJ0+eZNasWSQnJxMdHU1w
1966
cDCDBw82TOZe2Yni09PTsbOzM6zb2NiQlWVcnazT6Qy/3+bNm+nSpUupTjAAV65cYeLEicTExDB8
1967
+HDeffdd4uPjiY+Pp2fPntWavP7HH3/k+++/Z8GCBUbb3d3dOXnyZJWOZW4mq4aysrJ48MEHb3oS
1968
5+pYulRNBBn5GRY/txBmpyg1s9wEjUbD559/zokTJ5g4cWKF5UuSAICDgwNZWVkkJCTg7e1tVM7X
1969
19eoGqS4uNjo/dTUVKZMmcKKFSsIDw+nb9++rFy50pAEqsLZ2dnoXLm5uWXObwJq0li+fDkrV64s
1970
8/0VK1awcOFCTp8+zT333MOePXuIioqiZ8+eVY6rxIgRI1iyZAkDBw4kLi7OsN3e3p6CgoJqH9cc
1971
TN4R9OnThyeffJKpU6daMh4AFi2C74e7ciX/isXPLURD4eXlxY4dO+jTpw9Tp07l008/rdL+zZo1
1972
4+LFi0bbzp8/b1TlYW1t/BGzaNEipk2bZvgmn5+fb5i1sERlq2H8/f2Jjo42bE9JSaFz586lyiuK
1973
QlhYGF9++SVOTk6cO3eO5s2bG5V55plnsLJSZ0McNmwYYWFhRnOlV6VqaPPmzbz55pv8/vvvODk5
1974
0aRJE9auXcuLL74IqI3cphJWbTGZCDIyMvD19bVkLAZ//w0OVi5k5MkdgRDm1KxZM0MymD59Ou+/
1975
/36F+5R8C+/RowdWVlZ88sknTJkyhc2bNxMVFWXUONy0aVOysrIME1hlZmYaGniPHj1K+/bt0el0
1976
RsevbDVM7969mTFjhmE9JibG0E31zJkztGzZEo1Gw8KFCxk1ahR5eXns37+f3NxcmjdvzqlTp/D3
1977
90er1RqSQIm4uDijHlRVqRqysrIyJBFFUYiPj6djx46G9xMSEmjXrl2ljmUpJhPB7t27GT58OBqN
1978
plqNxOPHj2fz5s00adKEw4cPA+pAdps2bcLGxgZ/f3+++uorXF1dS+3r6wtJ5124kn8FRVEqnM1M
1979
CFF9vr6+7Ny5k969ext6upSnpDFZp9Px448/MnHiRF555RUGDhzIgw8+iI2NjaFsnz592L9/vyE5
1980
PPPMM2zYsIFjx45x4cIFwsLCqh23o6MjM2bMYP78+ej1embMmGGY/3zUqFEsXbqU7Oxsnn/+eUPy
1981
0mg0nD+vPp80dOhQPvjgAx544IFSx76ZKvEHHniA2NhYFi5cyLlz53j11VeNRmw+dOhQparjLKq8
1982
me2vXLmiPPjgg+UVMSkyMlKJiYlRAgICDNu2bdumFBcXK4qiKC+99JLy0ksvldoPUEaOVJTVqxXF
1983
9nVbJbcwt1rnF6K2VPBvVa9169ZNWb58uWE9LS1NefXVV2sxItPy8/OVyMjIUtujoqKUzZs3m+Wc
1984
ubm5yvPPP39TxzD193Uzf3flPkfg7OzMjz/+WK0E06tXL9zd3Y22hYSEoNWqp+zevTsXLlwoc9+O
1985
HeGvv8DVzlWqh4SowyIjI0lMTKSoqIivv/6aI0eOGH3DdnNzw9PTk5SUlFqMsmw//fRTmY3Bx44d
1986
o0+fPmY555o1a5g8ebJZjn0zKnyO4Mb6u5qybNkyQkNDy3zv2LE5HDgARa2K+LXNrzw29DGzxCCE
1987
uDknTpxg9OjRZGdn4+/vz9q1a0vNcf6vf/2LL7/8kkmTJtVSlGUbM2ZMmdvN9dRvfHw87u7u3HHH
1988
HTVyvIiICCIiImrkWBXOWdyhQ4dSc2G6urrStWtXZs2aRaNGjUzuGxcXx5AhQwxtBCXeeOMNYmJi
1989
+OGHH0oHpNEQG6vQuzd4vdaFzx/8nC63danq7yVErZE5i4U5mWPO4grvCB544AGsra155JFHUBSF
1990
NWvWkJOTg5eXF0899RQbN26s0gmXL1/Oli1bjB5hv1Hz5pCRAS2sXKQLqRBCmFmFiWD79u1GI452
1991
7NiRoKAgDh48aPRYemVs3bqVd999l127dhk9EXgjrVZtJ9DnShdSIYQwtwoHnSsuLuaPP/4wrO/f
1992
vx+9Xg+UfljkeqGhofTs2ZMTJ07g6+vLsmXLePbZZ8nKyiIkJISgoKByH1br2BEKMuWhMiGEMLcK
1993
7wiWLl3KuHHjDGN4ODs7G/rnvvLKKyb3++abb0ptGz9+fKUD69gRdp2WYSaEEMLcKkwEXbt25ciR
1994
I2RkZKAoitFof6NHjzZbYB07QtpvckcghBDmVmEiSExM5NVXX+XixYts3bqVY8eOsXfvXiZMmGDW
1995
wAICIOWiC+m5yWY9jxA1zd3dXZ6GF2Zz4/NZNaHCNoKnnnqK/v37888//wDQunVrPvjggxoP5EYu
1996
LuoDZecvyR2BuLWkpqaiKIossphlSU1NrfG/2QoTQUpKCmPGjDEMyqTT6cptJK5JrXxciJdEIIQQ
1997
ZlVhInBycuLy5cuG9X379pU5UJw5tG3hSkJaukXOJYQQDVWFX+0XLFjAkCFDiI2NpWfPniQnJ7N2
1998
7VpLxEZQW3d++E0SgRBCmFOFieCuu+5i165dnDhxAoA77rjDbOMP3ahbR3eyd6Wi16sPmQkhhKh5
1999
JhPBDz/8YBi74voeECVzbY4YMcLswbVs5gEOqZw+DW3amP10QgjRIJlMBBs3bkSj0XDp0iX27Nlj
2000
mFgiPDycnj17WiQRuNu5o9imc+CAQps20h1PCCHMwWQiWL58OaDOIXDs2DGaNWsGqNOsPfnkkxYJ
2001
TmelQ6exY29MJqGhLhY5pxBCNDQV1rzHx8fTtGlTw7qXl5dhqjdLcLVx58DRNIudTwghGpoKG4v7
2002
9evHgAEDDMNQf/vtt4SEhFgiNgCaOHvw1+lUFKU58rCmEELUvAoTwcKFC/npp5/YvXs3AJMnT2b4
2003
8OFmD6xEY2d3ktzSOHsWWra02GmFEKLBMJkISnoLaTQaRowYUWbj8I09iszBw94Dv3apHDggiUAI
2004
IczBZBtBcHAw7777rqG76PVOnDjB22+/bbYJnq/nbueOt38aUVFmP5UQQjRIJhPBtm3baNSoEdOm
2005
TaNZs2a0adOG1q1b06xZM/7v//4PLy8vtm/fbvYAPew98Lw9levmxhFCCFGDKpy8HtRZylJSUgDw
2006
9PQ0DEBXnvHjx7N582aaNGlimLw+NTWVMWPGcO7cOfz8/Pjuu++M5jeA0hMwh/0WRlJGOl+ODSMt
2007
DSw03p0QQtxSbmby+koN3GBlZYWXlxdeXl6VSgIA48aNY+vWrUbbwsLCCAkJ4eTJk/Tt25ewsLAK
2008
j+Nu5062PhUfHzhypFKnFkIIUQVmG8GnV69epSZQ2LBhg+FhtCeffJJ169ZVeBwPew/S8tLo3h2p
2009
HhJCCDOwaEVLUlISXl5egPpgWlJSUpnl5syZY/jZpY0LKYUp3H81EUyebIlIhRCibouIiCAiIqJG
2010
jlWpNoLqiouLY8iQIYY2And3d9LSrj0l7OHhUWq2nRvruQ4nHSb0h1BW3H2Exx+Ho0fNFa0QQty6
2011
zNJGcP58ULItAAAgAElEQVT8ecaOHcu9997Lm2++SWFhoeG9YcOGVetkXl5eJCYmAuqYRU2aNKlw
2012
n8aOjUnOSaZDBzh3Dq7IhGVCCFGjTCaC8ePHExwczMKFC/nnn3/o06ePoefQuXPnqnWyoUOH8vXX
2013
XwPw9ddfVyqheDp4kpqbitaqmE6dkOcJhBCihplMBMnJyUyZMoWgoCA++eQTpk6dSu/evTlz5kyl
2014
DhwaGkrPnj05ceIEvr6+fPXVV7z88sv8+uuvtGnThp07d/Lyyy9XeBxrrTUuti6k5qZKg7EQQpiB
2015
ycbioqIi8vLysLOzA+Cxxx6jadOmDBgwgOzs7AoP/M0335S5vToPoTVxbEJyTjLduzdm5coq7y6E
2016
EKIcJu8IJkyYwL59+4y29evXj++//56AgACzB3a9xg6NuZR9iZ49Yc8e0OstenohhKjXzNprqDrK
2017
avke+d1IxrQfw6j2o2jRArZsgXbtailAIYSog8z6ZPHFixerdeCa1MSxCZeyLwHQqxdcHRFbCCFE
2018
DSg3ERw+fJiHH37YUrGYVNKFFODee+G332o5ICGEqEdMJoLw8HDGjBnDyjrQOtvEwfiOQBKBEELU
2019
HJO9hoYMGcIff/xBq1atLBlPmRo7NuZSnJoI2rZVHyq7eBG8vWs5MCGEqAdM3hE8+uijzJ8/v9qN
2020
DzWppPsogEYj1UNCCFGTTCaCxYsX0759ex577DFLxlOmku6jJe69VxqMhRCippTbWDxr1iz69+9v
2021
qVhMauLYhOTsZMO6tBMIIUTNKTcRKIrCfffdZ6lYTPKw9yA9L50ifREAQUFw5gykp9dyYEIIUQ9U
2022
+BzBoEGDLBFHuay0Vng6eBqqh2xsoGtX9SljIYQQN6fcRKDRaLjrrrvYv3+/peIx6Tbn27h45drD
2023
bb17w65dtRiQEELUExXeEezbt48ePXrQsmVLOnToQIcOHejYsaMlYjPi7eLNxcxriaBvX9ixw+Jh
2024
CCFEvVPhVJW//PKLJeKokLezN/9k/mNY794dTp6E1FTw8KjFwIQQ4hZnMhGUTCHp4uJisWDK4+1s
2025
fEdgYwM9e0JEBIwYUXtxCSHErc5k1VDnzp2566676Ny5M56enrRu3ZrWrVvj6enJXXfdZd6oHnmk
2026
1KYb2whArR7audO8oQghRH1nMhHExcVx9uxZQkJC2LRpE5cvX+by5cts3ryZkJCQmzrpW2+9Rfv2
2027
7enQoQOPPPII+fn5xgW2bIHr5kiG0m0EIO0EQghREypsLN67d69RF9KBAwey5yb6bcbFxbFkyRJi
2028
YmI4fPgwxcXFrFmzxrhQy5al5qT0dvYudUfQqRNcuqSOOySEEKJ6KkwEt912G/PnzzfcIbzxxht4
2029
38Roby4uLuh0OnJycigqKiInJ6f08QYMgG3bjDZ5uxg3FgNotRAcLNVDQghxMyrsNfTNN98wd+5c
2030
hg8fDkDv3r1NzkdcGR4eHrzwwgvcfvvt2NvbM2DAAPr162dUZk5CAmzfDlotwcHBBAcH427nTn5x
2031
PtkF2TjaOBrKllQPPf54tUMSQohbTkREBBERETVyLItPVXnmzBmGDBnC7t27cXV1ZdSoUYwcOZJH
2032
H31UDUijQcnLg8aNIS7OqG+o/8f+/Pzoz7Rp1Maw7cQJCAmBc+fUkUmFEKIhMutUlTUtOjqanj17
2033
0qhRI6ytrRkxYkTpNgdbW3VkuRtagstqJ2jTBhRFTQhCCCGqzuKJoG3btuzbt4/c3FwURWH79u3c
2034
eeedpQv2719mO8GNPYc0Ghg4EH7+2ZxRCyFE/WUyEaxevZrLly/X+AkDAwN54okn6NKli2Goiqef
2035
frp0wZIG4+tudW53vZ3zGedLFR00SO1xKoQQoupMthGEhYWxbds2CgoK6NevHwMHDqRbt25ozFwR
2036
b6jnUhRo0QI2bYKAAAA+j/6cAwkHWDJkidE+mZlw222QkABOTmYNTwgh6iSztBG8/PLL7Ny5ky1b
2037
ttCxY0eWLVtG586dCQ0NZcWKFSQlJVU74ErRaGDoUFi/3rDJz82Ps2lnSxV1dlbHHpJupEIIUXUV
2038
thG4uLgwYsQIFi9ezMGDB5k1axaXLl3icUv013zoIaNE0MKtBWfTSycCUNsJpHpICCGqzuLdRyti
2039
dHtTWAhNmsDRo3DbbeQV5eEa5krOzBystFZG+x0/rjYrSDdSIURDdEt1H60SnU79qr9xIwB21nY0
2040
sm9UqucQQNu2YGWl5gwhhBCVV7cTAZSuHnJvUWY7gUYjvYeEEKI6KpUIsrOz+fvvvzlx4gTZ2dnm
2041
jsnYAw/A7t1q1yDUdoK49Lgyiw4aBJs3WzA2IYSoB0yONZSZmcmSJUtYs2YNKSkpeHl5oSgKSUlJ
2042
NGrUiEcffZRJkybhZO7+mq6u0KMHbN0Ko0apdwQmGoz79oVHH4XkZHWECiGEEBUzeUcwbNgwnJ2d
2043
2bhxI7Gxsezdu5d9+/Zx9uxZNm3ahKOjIw899JBlohw5Er7/HgA/Vz+TicDOTn0gecMGy4QlhBD1
2044
Qd3uNVQiJQX8/eHiRcKTo/hvxH/ZPW53mft/8w2sWqU+hyaEEA2FWXsNFd4wUxhAcnJytU5WbZ6e
2045
cM89sHEjd3jewYkU0yPMDR4MkZFw5YoF4xNCiFuYyUQQHh6Oj48PTZs2pX///pw9e606pn///hYJ
2046
zsjYsbBmDc2cmpFXlEdqbmqZxVxc4N57ZRA6IYSoLJOJ4D//+Q+//PILKSkpPP3004SEhLB3715L
2047
xmbsoYcgIgJNenqFdwUjRsCPP1owNiGEuIWZTAQFBQW0b98ejUbDyJEjWb9+PU899RTr1q2zZHzX
2048
uLqq3YLWraOtZ1tOXDadCIYOhV9+gbw8C8YnhBC3KJOJwMbGhsTERMN6+/bt2bFjB7Nnz+bUqVMW
2049
Ca6UsWNh9WruaHQHf6f8bbJYkyYQGKjOdimEEKJ8JhPBW2+9ZZQIAHx8fNi1axcvv/yy2QMr09Ch
2050
EBNDUGGjcu8IQO1x+u23FopLCCFuYbXSfTQ9PZ2JEydy9OhRNBoNy5Yt4+6771YDqqgL1LRpJDpp
2051
uP/2nRybdsxksaQkuOMO+OcfcHCo6d9ACCHqFrN2H/3111+rdeDy/Otf/2LQoEEcP36cv/76i3bt
2052
2lV+5/HjafL9Zs5ePkORvshkMS8vdY6Cq+PVCSGEMKHcRLBixQoWLFhQoyfMyMhg9+7djB8/HgBr
2053
a2tcXV0rf4DOndE6OTMi2ZNTl8tvq3jkEVi9+maiFUKI+s9kIpg/fz7Lli3jxxruh3n27FkaN27M
2054
uHHj6Ny5M5MmTSInJ6fyB9BoYPx4nv7Tij+T/iy36PDhEBEBqWU/ciCEEIJy2ghsbW05fvw4LVu2
2055
rNETRkdH06NHD/bs2UPXrl3597//jYuLC/PmzVMD0miYPXu2oXxwcDDBwcHGB0lOJq/l7by9cgqz
2056
H/qg3PONHg0hITBpUo3+GkIIUasiIiKIiIgwrM+dO7fabQQmE8Hq1at599132bZtG41rcCjPxMRE
2057
evToYXhS+bfffiMsLIxNVwcHqmyDx4UHe7PFLZmnVx4vt9y6dfDRRxAefvOxCyFEXWWWxuJHHnmE
2058
BQsWMGzYsGoHVpamTZvi6+vLyZMnAdi+fTvt27ev8nG0zz5HyNZToNeXW27gQPjrLzh/vlrhCiFE
2059
vVdh99EjR44QEBBQoyf9888/mThxIgUFBfj7+/PVV18ZGowrm9UUvZ5Dvjr8P1mFy/Cx5ZadNk3t
2060
RfTf/9ZI+EIIUefczB1BuYlAr9ezdu1aRo8eXe3gqhxQFX6ZNye0YfIZNxpF7C+3XEyMOv5QbCxo
2061
6/7knEIIUWVme45Aq9Xy9ttvV+vAlpAypC/2fx6HCoa86NwZPDxgxw4LBSaEELeQCr8fh4SE8N57
2062
7xEfH09qaqphqQuCWvRk630+8OGHFZadOBG+/NICQQkhxC2mwjYCPz8/NBqN8U4aDbGxseYJqAq3
2063
NycvnyT00/s58EEOHD+uNgSYkJ4Ofn5w+rQ6z40QQtQnZmsjqA1V+WUURaHRO424cHooDo1vgzff
2064
LLf8E09AUBA8/3xNRCqEEHWHWdoIrn9QwZTwWu6cr9Fo6Obdjd9H94DFiyEjo9zyEyfCF19A3Up9
2065
QghRu6xNvbFp0yZmzJhBv3796NKlC82aNUOv15OYmEh0dDTbt2/nvvvu47777rNkvKV09+lOePE5
2066
QgYMUJPBjBkmy/bqBdbWaqNxv34WDFIIIeqwcquGMjMzWb9+Pb/99hvnrz6R1bx5c+69914eeugh
2067
nJycaj6gKt7e/HzqZ97d8y47O3+kjiVx+jSUE9eSJeqIpBs21ES0QghRNzTYNgKAjLwMfD7wIeU/
2068
Kdg+9qQ6Ndkrr5gsn5MDzZvDvn3g718TEQshRO0zSxvBvn37CAwMxNHRkR49enDsmOlJYGqTq50r
2069
bT3bsv/ifpg7F95/X+0iZIKDA4wfD4sWWTBIIYSow0wmgmnTpvHee+9x+fJlpk+fzvN1uKtNsF8w
2070
EXER6pRkQ4ZABXMoTJsGX38NWVmWiU8IIeoyk4lAr9cTEhKCnZ0do0aN4tKlS5aMq0qCmwcTcS5C
2071
Xfnvf+HTT6GceG+/He67D5Yvt0h4QghRp5nsNZSRkcGPP/5oqHO6fl2j0TBixAiLBVmRe2+/lzFr
2072
x5BflI+tnx88+STMmqX2FTXhxRchNBQmTwadznKxCiFEXWOysfipp54yeqK4JAGU+Oqrr8wTUDUb
2073
PHos7cG84HmE+IeobQRt28LWrdCpk8l97r8fxo2Dxx+/mYiFEKL2NeheQyXeiHyD5JxkPnzg6rhD
2074
ixerExZHRKjTW5bh11/hX/+CI0dkVFIhxK3NLIlgwYIFpcYYut706dOrdcIKA6rmL3Mo8RAjvxvJ
2075
qWdPqXEXF6vDjr72GowcWeY+igLdusHMmer8xkIIcasyS/fRzMxMMjMziY6O5rPPPuPixYtcuHCB
2076
zz//nJiYmGoHay6BXoHkFeVx8rI68xlWVuqopC+8AJmZZe6j0ahJ4M03ZdgJIUTDVWHVUK9evdiy
2077
ZQvOzs6AmiAGDRrE7t27q33S4uJiunTpgo+PDxs3bjQO6Cay2tMbn6atZ1um97jubuWpp8DVVZ24
2078
uAx6PXToAO++C4MGVeu0QghR68w2MQ3ApUuX0F3XrUan0910V9KPPvqIO++8s9yqp+p4sM2DbDxp
2079
nFhYsAC++059lLgMWi28/rrayaiC6Y+FEKJeqjARPPHEE3Tr1o05c+Ywe/ZsunfvzpNPPlntE164
2080
cIEtW7YwceLEamcvU0JahnAo8RAJmQnXNjZqpFYRTZwIBQVl7jd8uJoQ1q6t0XCEEOKWUKleQwcO
2081
HGD37t1oNBp69+5NUFBQtU84atQoZs6cyZUrV3jvvffKrBqaPXu2YT04OJjg4OBKH//JdU9yV7O7
2082
eK77c9c2KgoMHapORjBvXpn7bdsGzz4LR4+qI5QKIURdFhERYTRdwNy5c2+N7qObNm3i559/ZtGi
2083
RURERLBgwYIabSMA2Hp6K3N3zWXvhL3GbyQkqInghx/gnntK7aco6nMFjz+ujkUkhBC3ErO2EdSk
2084
PXv2sGHDBlq0aEFoaCg7d+7kiSeeqNFz9G3RlzOpZzibdtb4jWbN1GcLHnuszAlsNBq199Ds2ZCd
2085
XaMhCSFEnVZrD5Tt2rXLZNXQzYY0dfNUmjk147U+r5V+c8oU9ZP+f/8rc9/QUGjTRh3IVAghbhW3
2086
zB3BjWq611CJSZ0n8eXBLynWF5d+c8ECiI6GpUvL3Pedd9Qhqs+dM0toQghR59SbISZu1P3L7vy3
2087
938Z3GZw6TePH4fevWHLFujatdTb8+bB4cPw/fc3HYYQQljELXtHYE5T7prC5wc+L/vNdu3U9oKR
2088
IyE5udTb//kPREVBeLiZgxRCiDqg3iaCMQFj2Bu/t3SjcYkRI+CRR2DMmFLPF9jbq48ePPMM5OVZ
2089
IFghhKhF9TYROOgcePqup3lv73umC82fD87OMGlSqcGGhg2D9u3hjTfMHKgQQtSyettGAJCUlUS7
2090
Re04Pu04Xk5eZRfKyVGnKxswoNTDZv/8A4GBsGMHdOxYIyEJIYRZSBuBCV5OXowNGMtHf5Q94Byg
2091
zma/cSOsWgVffmn01m23qc8WTJyojmothBD1Ub2+IwA4m3aWLku6cHzacZo4NjFd8ORJCA6GDz5Q
2092
2w2u0uuhXz8ICYFXXqmxsIQQokbJDGUVeO5nddyhjwd+XH7Bw4fVT/xFi+Dhhw2bz5+HLl3U3qZd
2093
utRoaEIIUSMkEVQgOTuZdova8cfEP/D38C+/8MGD8MADsGSJOlDdVd9+q052dvAgODrWaHhCCHHT
2094
JBFUwpu732TfhX2sH7u+4ieao6LgwQfVPqShoYbNTz4JNjZqjhBCiLpEGosr4YUeL3Aq9RTr/l5X
2095
ceGuXWH7dvXJskWLDJsXLoRdu2DFCjMGKoQQFtZg7ggAdsXt4rGfHuPY1GM42zpXvMPZs9C/v/rg
2096
2Zw5oNFw5Ija23TbNnVUayGEqAukaqgKxq8fj85Kx+IHF1duh6QkGDIE/P1h2TKwt2fNGnXS++ho
2097
8PAwW6hCCFFpUjVUBR8+8CHbY7fz4/EfK7eDl5daH6TVQq9ecPEiY8eqTx6PHg2FheaNVwghzK3B
2098
JQIXWxdWj1jNM5ufIT4jvnI72dvDypXqIHXdusHu3bzzjrp5ypRSo1MIIcQtpcElAoDuPt15occL
2099
PPzdw+QW5lZuJ40GXn5Z7TI0ahTWYfP5ZmUxhw7BW2+ZN14hhDCnBtdGUEJRFB776TH0ip7VI1ZX
2100
bZKcixfh0UfByoqkBSvpPqwZs2fDuHHmi1cIIcpzS7URxMfHc99999G+fXsCAgL4+OMKnvY1E41G
2101
w9KhSzmbdpZZ4bOqtrO3tzoSXe/eeA3oxN5p/2PWqwrffGOeWIUQwpwsfkeQmJhIYmIinTp1Iisr
2102
i7vuuot169bRrl07NSAL3RGUSM5Ops/yPjze8XFe6VWNwYRiYmDcOK64+dLn2Oe8ttiHESNqPk4h
2103
hCjPLXVH0LRpUzp16gSAk5MT7dq1459//rF0GAaNHRuz/YntLD24lA/2flD1A3TuDFFRuPTtxv7i
2104
zkQ9+Qk/fV9U84EKIYSZ1GobQVxcHH369OHo0aM4OTmpAWk0zJ4921AmODiY4OBgs8dyLv0c/f7X
2105
j7EBY5kXPK9qbQYljh7lyrjnuHjwEmef/5hB79xX84EKIQQQERFBRESEYX3u3Lm33gNlWVlZBAcH
2106
M2vWLIYNG3YtIAtXDV3vUvYlBq8eTKBXIJ8N/gydla7qB1EULn7yE/rnp5N7ZxfafP8G3HFHzQcr
2107
hBDXuaWqhgAKCwt5+OGHeeyxx4ySQG1r4tiE8CfDScxKpO+KviRkJlT9IBoN3s+OQHP8OJsS7yIr
2108
6F704yfAuXM1H7AQQtQAiycCRVGYMGECd955J//+978tffoKOdk4sSF0A/1a9qPLki5Enous1nF8
2109
Wtsz7sQrPNbtFGt2NUMf1BmefVYSghCizrF4Ivj9999ZuXIl4eHhBAUFERQUxNatWy0dRrm0Gi3/
2110
7fNflg1dxpi1Y5jx6wzyivKqfBx3d1i73Y0/HpzPvR7HuZxrrzYuP/YY/PmnGSIXQoiqa7APlFXW
2111
pexLTNsyjSOXjrB06FJ6+vas1nGWLlUfTP5oXgaPZH2hznUQEADPPadOhGNlVcORCyEaEhl91AK+
2112
O/od03+ZTrBfMGH9wvBx8anyMQ4fVqdD7toVPlmQj/Omb+DTT9URTidNggkToFkzM0QvhKjvbrnG
2113
4lvR6Paj+fv//sbPzY/AzwN5Lfw1UnNTq3SMDh3Uyc9sbKBDF1t+9X4K9u+Hn36C+Hi4804YMUJd
2114
z883zy8ihBA3kDuCaohLj2N+5Hx++vsnpnSZwvN3P4+ng2eVjvHLL/D00+q8N++9B66uQGYmrFkD
2115
q1fDX3/B8OHqpDh9+kjVkRCiXHJHYGF+bn58OfRLDjx9gMs5l2m9sDVPb3yaPxMr3wA8YIBaVWRt
2116
De3awVdfgd7RWa0iCg9XG5PbtYMXXwRfX3jmGfj5Z7lTEELUOLkjqAFJWUksiVnC59Gf08K9BZPv
2117
msywtsNwsnGq1P5RUWqbcVERfPwx9OhxQ4GTJ2H9enU5cgRCQmDoULWRuXHjmv+FhBC3HGksriMK
2118
iwtZf2I9Xx36it/P/86g1oN4tMOj9PfvX+FTynq9WiP0yitqD9O5c+HqkEzGkpNh0yY1KYSHQ8uW
2119
0K+fuvTqBQ4O5vnlhBB1miSCOig5O5nvjn7HqsOr+Dvlbwa0GsCQNkMY2Gog7vbuJvfLy4MvvoCw
2120
MPXOYPZs6NjRROHCQvV2Yvt2dYmJgS5d1IRwzz1w993g5maeX1AIUadIIqjjLl65yOZTm9l4ciO7
2121
4nYR1CyIvi36EuwXTHfv7tha25baJycHPvsMFiyA9u1h+nS1XUFbXqtOZibs3g2//w579kB0NPj5
2122
qUmhZ0/o3h1at67gIEKIW5EkgltITmEOEXERRMRFEB4Xzt8pf9PNuxt9mvfhbp+76XJbFzzsPQzl
2123
Cwrg22/h/ffVduJnnlEnR/PwKOckJQoL1UbnPXvU5BAdDZcuQWCgWv9UsrRrB7pqDLAnhKgzJBHc
2124
wjLyMth9fjeR5yLZf3E/MQkxeDl50fW2rnTz7sZdze4ioEkAbnbu7NqlTpm8ebPaTjx+PPTtW8We
2125
pWlpcOiQWo0UEwMHD0JcnDpCavv26rMMJUvLlmq3JiFEnSeJoB4p1hfzd8rfRP0TZUgMx5KP4Wzr
2126
TECTAAKaBNDCMYDz0e35ZXUbks65MWIEjBqlNg1U63M7KwuOH4djx4yXf/5Rq5LuvFN99fe/tjRr
2127
BtWZs0EIYRaSCOo5RVE4n3GeI5eOqEvyEY5eOsqp1FNYY4NzYSuy41uR908rurRsRUgXf0bc78cd
2128
3l5YaW/iQbTsbDhxQk0Kp0/DmTPXlqwsaNHCODn4+qqLjw94ekqiEMKCJBE0UIqikJyTzOnU05xO
2129
PU107Gn2HD/D6bRTXNGcB/s0XLXN8HX1oe1tvvi5++Lr4ouvqy/ezt54OXnh5ehVZmN1hTIzITZW
2130
TQqnT8PZs+owGSVLbq6aEEqSQ8ni7Q1eXtC0KTRpArbVOLcQohRJBKKUvDzYGZnPT9svsvuveM5e
2131
jserTTyNWsRj3SiePN1FUguSSM5OxkHnYEgKhterPzdxbIKHvYfRYmdtV3EA2dnGieHCBfX14kV1
2132
kL2kJLXh2snpWmIoeS35uUkTaNRIbRlv1EjtCitDbQhRJkkEokLZ2er4dr//Dr/9pnYgsrKCTkEK
2133
bTul0fzOJBq3SMLKNYmU3CSSspNIykriUvYl0vLSSM1NNSxWGqtSyaFkcbV1xcXWBRdbF5xtna/9
2134
bHPtZ0cbR7QarfoUXVoaJCaqS1KS8WtyMly+fG3JzFQHZWrUyDhBXL+4uoKLi/p6/eLsLElE1GuS
2135
COqpiIgIgoODzXJsRVG/nB88qHYiKnn95x+16v+OO9SlTRv11d9f/ZKu0SjkFuUaJYaS5XLOZTLy
2136
M8gsyORK/hXDkpl/bT2zIJOcwhwcdY5GycLJxglHnSMOOgccdA442lz92Vr9+cJfFwjq2hG3XAXX
2137
rCKcswpwyszHMSsf+ys52KZnYZOeiVVWDtormWgyMqBkuXJFTSIODsbJ4fqE4ewMjo7qHYqjo+mf
2138
r99WS11uzfl3cauRa3HNzXx21krfwK1bt/Lvf/+b4uJiJk6cyEsvvVQbYdR55vwj12jUKnwfHxgy
2139
5Nr23Fy1yv/kSbWdODJS7bIaG6t+nvr4aLj9dgeaN3fg9tt9uP12tdq/hRd4tVSHPqro87FYX0xW
2140
QZYhMZQki5zCHKMluzCbnMIcErMS+X3376Q1TVO3F6jbc4pyyLHKIdspmxzbHHI8csgvyqdIX4SN
2141
lQ121nbYWttiZ+2KnaYxHsU2eBRa41FohXt+Ae75qbjmp+KaD46p4JgEjvl67AsU7POKscsvxja/
2142
CNvcQmzyCtDlFaLLzcc6Nx/rnDwUrRa9gz3FDnboHR1Q7O1R7GzBzh6NvR3YO6Cxs0Pj4IjW3h6N
2143
nQNWjk5o7ezRODiAnR3Y25f/amNjvNjayoffdeRa1AyLJ4Li4mL+7//+j+3bt+Pt7U3Xrl0ZOnQo
2144
7dq1s3Qoogz29uq8CR06lH4vN1et5j9/Xl3OnVMfZE5IuFbtn5KiftH28rq2eHqq03a6uZW8WuHu
2145
7oq7uytubuDtDs63lf/A85w9c5gzbE6lfge9oie/KJ+8ojzyi6++VrCeXZTP5evfv/qaV5RHYXEh
2146
hfpCCosLKSguoFBfSEFRPkp+Ada5eWhzctUEkVeANj8Lq7w0rAsKscovxLqgEN2VYqyTC7EpKEZX
2147
qMe2UI9DkQbHYivsizU4Fmmwv7rYFYF9oYJtEdgVKlgXK9gUKeiKFXRXXylWKHhjHkXWWoqstRRb
2148
W1191VKks6LY2opinRXFOmuKdVbora3RX11XdNboddbobXQoOh2KzhpFp1P7HV+3aMrYpljr0Oiu
2149
K2OtA50OjU6n/mxtjUZng8baGnQ2aA3v2aivOh1anQ2aq+9pr263stahtdah1VphpbFCq9Gi1Wix
2150
0qo/l7WtZBE1w+KJYP/+/bRq1Qo/Pz8Axo4dy/r16yUR3ALs7dWqojZtTJfR69Xq/Ovbg1NS1KaA
2151
ixfVwVPT09X1tLRrP2dnq8e/sfalZD02Vq22Klm3s1M7HJW9aLG1tb+6XNvuaqt+qba2V5sLrv+c
2152
s7JSF0v0eNUreor0RUaJpeTnIn0RxUox+foicvTFFOmLDNtKfo794Ct2Th6Fkp+HviAfJT8PJT8f
2153
JT8fCtRXpSAfCgpQ8gvQFBaoj6gXFKApKISCQjSFBWgLCtX14gIoykGTVwTFxWgLi6CoGG1xMZpi
2154
PdpiPdqiYvX1usWqZJtewapYj7ZYfTX8rC9ZV9RFf+3VWg/WxYq6rx6sFNBr1KVYA8Va9VWvgcLr
2155
fjOTTbMAAAkHSURBVC7ZXqxV11Pz4O9Fc1E0GnWbVkOxBpSrr3qtBr0W9BpNmT8XazUohnUNimEf
2156
DXqtFkULeq0WNKBoNChaDQpXX7Ua0Kj7c/U4iqGsVn3/ujIl76HVXt3nulet5to3Ia32atmrx9Vq
2157
r753tUxJWU3Juvamh42xeCK4ePEivr6+hnUfHx/++OMPozIa6X9uMHfu3NoOwWKys9Xl0qWy3z98
2158
uOFci4r8b+HK2g6h5ilXF4Diyu+2MLdk5+tfRVVYPBFU9CEvDcVCCGFZFq9k8/b2Jj4+3rAeHx+P
2159
j0/VJ4IXQghRMyyeCLp06cKpU6eIi4ujoKCAb7/9lqFDh1o6DCGEEFdZvGrI2tqaTz75hAEDBlBc
2160
XMyECROkoVgIIWpRrfS/GjhwIB999BHW1tYsW7aMt99+u8xyzz33HK1btyYwMJCDBw9aOErL2bp1
2161
K23btqV169ZlXotVq1YRGBhIx44dueeee/jrr79qIUrLqOhalIiKisLa2poff/zRgtFZVmWuRURE
2162
BEFBQQQEBNTr/vQVXYuUlBQeeOABOnXqREBAAMuXL7d8kBYwfvx4vLy86FBW/+6rqvW5qdSCoqIi
2163
xd/fXzl79qxSUFCgBAYGKseOHTMqs3nzZmXgwIGKoijKvn37lO7du9dGqGZXmWuxZ88eJT09XVEU
2164
Rfn5558b9LUoKXffffcpgwcPVtauXVsLkZpfZa5FWlqacueddyrx8fGKoihKcnJybYRqdpW5FrNn
2165
z1ZefvllRVHU6+Dh4aEUFhbWRrhmFRkZqcTExCgBAQFlvl/dz81auSO4/lkCnU5neJbgehs2bODJ
2166
J58EoHv37qSnp5OUlFQb4ZpVZa5Fjx49cHV1BdRrceHChdoI1ewqcy0AFi5cyMiRI2ncuHEtRGkZ
2167
lbkWq1ev5uGHHzZ0tvD09KyNUM2uMteiWbNmXLlyBYArV67QqFEjrOvhpEq9evXC3d30nOfV/dys
2168
lURQ1rMEFy9erLBMffwArMy1uN7SpUsZNGiQJUKzuMr+Xaxfv55nnnkGqL/PnFTmWpw6dYrU1FTu
2169
u+8+unTpwv/+9z9Lh2kRlbkWkyZN4ujRo9x2220EBgby0UcfWTrMOqG6n5u1kjIr+8+r3PBMQX38
2170
p6/K7xQeHs6yZcv4/fffzRhR7anMtfj3v/9NWFiYYYCtG/9G6ovKXIvCwkJiYmLYsWMHOTk59OjR
2171
g7vvvpvWrVtbIELLqcy1ePPNN+nUqRMRERGcOXOGkJAQ/vzzT5ydnS0QYd1Snc/NWkkElXmW4MYy
2172
Fy5cwNvb22IxWkpln6v466+/mDRpElu3bi331vBWVplrceDAAcaOHQuoDYQ///wzOp2u3nVBrsy1
2173
8PX1xdPTE3t7e+zt7enduzd//vlnvUsElbkWe/bs4dVXXwXA39+fFi1acOLECbp06WLRWGtbtT83
2174
a6QFo4oKCwuVli1bKmfPnlXy8/MrbCzeu3dvvW0grcy1OHfunOLv76/s3bu3lqK0jMpci+s99dRT
2175
yg8//GDBCC2nMtfi+PHjSt++fZWioiIlOztbCQgIUI4ePVpLEZtPZa7F888/r8yZM0dRFEVJTExU
2176
vL29lcuXL9dGuGZ39uzZSjUWV+Vzs1buCEw9S7B48WIAJk+ezKBBg9iyZQutWrXC0dGRr776qjZC
2177
NbvKXIt58+aRlpZmqBfX6XTs37+/NsM2i8pci4aiMteibdu2PPDAA3Ts2BGtVsukSZO48847azny
2178
mleZazFz5kzGjRtHYGAger2ed955Bw8Pj1qOvOaFhoaya9cuUlJS8PX1Ze7cuRQWFgI397lZ5yam
2179
EUIIYVkyoLcQQjRwkgiEEKKBk0QghBANnCQCIYRo4CQRCCFEAyeJQAghGjhJBKLei46OZteuXbzz
2180
zjsNOgYhTJFEIOq96OhounfvTkpKCllZWeWWzc/Pp0+fPmWOYTRnzhwWLFhQozHk5+fTu3dv9Hp9
2181
tY4rRE2QRCDqvSlTpqDT6SgqKsLJyancsqtWreLBBx8sc6Cumxn00FQMtra29OrVi3Xr1lX72ELc
2182
LEkEokH49ttvmTlzpuFxfFO++eYbHnroIcP6G2+8wR133EGvXr04ceKEYfvKlSvp3r07QUFBTJky
2183
xfCN/vXXX6dt2/9v795ZWtnCMI7/ZcgFRGzUfAOjeIu3gIgGr52D2ghaxN4PIFhY+RlEsNFCRBER
2184
jK3ihVTKoIjBTtKJEgJemImY2cVhi+5z9tFke4qTeX7t5GWtmWIeZq2w3jp6enqYnJz88AXxuzmY
2185
psn6+vp33KZIUUqvc4N43snJCYlEgmw2SzabpaGhgZubGw4ODlhaWvpt3evrK5eXl9TW1gJ/nXS6
2186
sbHB+fk5Ly8vtLW10dHRQSqVYnNzk2QyiWEYzMzMsLa2Rl1dHdvb21xcXJDL5d5+D7C6usrR0dE/
2187
ziESiZBMJv+7ByLyCQWBlJzq6moqKiro7+8nFosRCAS+VHd/f//h/Prj42PGx8cJBoMEg0FM08R1
2188
Xfb39zk7O3t7ydu2TSgUIpPJMDo6it/vx+/3MzIy8rbXEI/H3zpH/SoQCJDP57Ftm2Aw+Id3L1I4
2189
LQ1JyQmHw5yentLX1/flEPjp/Sbxz+Y3v15zXZd4PI5lWViWRSqVYn5+/m/1hZzn6LpuSTZekv8H
2190
BYGUHNd1cRwHn89XUF1VVdWHf/T09vays7ODbds8PDyQSCQoKytjYGCAra0t7u7uAMhkMqTTabq7
2191
u9nd3cVxHB4fH9nb2/vSy91xHAzDKDi0RL6Lloak5KTTadrb2wuuMwyDxsZGrq+vCYfDtLa2MjEx
2192
QUtLCzU1NUSjUQDq6+tZWFhgeHiYfD6Pz+djcXGRaDSKaZo0NzcTCoVoamqisrLy03Ety6Krq6vg
2193
+Yp8F/UjEHlnZWWF29tbZmdni6p/enqivLyc5+dnYrEYy8vLRCKRf62Zm5ujs7OTsbGxosYU+VMK
2194
ApF3crkcg4ODHB4eFrVmPzU1xdXVFbZtMz09/WmgOI7D0NBQ0eOJfAcFgYiIx2mzWETE4xQEIiIe
2195
pyAQEfE4BYGIiMcpCEREPE5BICLicQoCERGPUxCIiHicgkBExON+AE+krLV+KLnkAAAAAElFTkSu
2196
QmCC
2197
"></img>
2198
</div>
2199
</div>
2200
</div>
2201
</div>
2202
</div>
2203
<div class="cell border-box-sizing code_cell vbox">
2204
<div class="input hbox">
2205
<div class="prompt input_prompt">In&nbsp;[16]:</div>
2206
<div class="input_area box-flex1">
2207
<div class="highlight"><pre><span class="c"># Plot PDF dP(r^2) / dr^2</span>
2208
<span class="n">r2_max</span><span class="p">,</span> <span class="n">r2_step</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.001</span> <span class="c"># deg</span>
2209
<span class="n">r2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">r2_max</span><span class="p">,</span> <span class="n">r2_step</span><span class="p">)</span>
2210

    
2211
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">gauss_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;Gauss$(\sigma=0.2)$&#39;</span><span class="p">);</span>
2212
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">king_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.1, \gamma=1.5)$&#39;</span><span class="p">);</span>
2213
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">king_B</span><span class="p">(</span><span class="n">r2</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.2, \gamma=3)$&#39;</span><span class="p">);</span>
2214
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;$r^2$ (deg$^2$)&#39;</span><span class="p">)</span>
2215
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;dP(r^2) / dr^2 (deg^-2)&#39;</span><span class="p">)</span>
2216
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">)</span>
2217
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">(</span><span class="mf">1e-3</span><span class="p">,</span> <span class="bp">None</span><span class="p">)</span>
2218
<span class="n">plt</span><span class="o">.</span><span class="n">semilogy</span><span class="p">();</span>
2219
</pre></div>
2220

    
2221
</div>
2222
</div>
2223
<div class="vbox output_wrapper">
2224
<div class="output vbox">
2225
<div class="hbox output_area">
2226
<div class="prompt output_prompt"></div>
2227
<div class="output_subarea output_display_data">
2228
<img src="
2229
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcTfn/B/DXTYRKu6KilBFFaUhkaYYYazKDsq/DYOY7
2230
jGWY8SvDWGbGjBn7TrbsWSJLSlmiZKssUdqE9pK0fn5/fHS5WtRdut16Px+P+8g599xz3jfn9r6f
2231
XcAYYyCEEEI+QUneARBCCFEMlDAIIYRUCiUMQgghlUIJgxBCSKVQwiCEEFIpyvIOQFwCgUDeIRBC
2232
iEISt3OsQpcw3ha8BWOszj/c3d3lHkNNedDvgn4X9Luo+CEJhU4Yn637DMWsWN5hEEJInaDQCUO1
2233
vipCEkPkHQYhhNQJCp0wXNq64PjD4/IOQ+4cHR3lHUKNQb+L9+h38R79LqRDwCSt1JITgUCA0MRQ
2234
uB11w6NZj6gRnBBCKkEgEIjdlqGwvaQAwLaZLfKK8hCZHAnLppbyDoeQKtHW1kZ6erq8wyC1lJaW
2235
FtLS0qR6ToVOGAKBAEMthuLog6OUMIjCSU9Pl7jXCiHlkUWti0K3YWzdCrhaumHf/X30wSOEEBmr
2236
kQkjJiYGU6ZMwfDhwys8butWYN3CLiguZriZeLOaoiOEkLqpRiYMU1NTbNu27ZPHBQQA+XkC5IeM
2237
xeYbnrIPjBBC6rBqSxiTJk2Cvr4+2rdvL7Lf19cXFhYWaN26NVatWlWlczZuDBw8CAw0HoPdoQdx
2238
LyJPmiETQgj5QLUljIkTJ8LX11dkX1FREWbNmgVfX19ERkbiwIEDePDgQZXOq6QEbFhuitYaVug+
2239
5QT8/KQZNSGEkBLV1kuqR48eePbsmci+mzdvwtzcHCYmJgAAV1dXnDhxAvr6+li0aBHu3LmDVatW
2240
YcGCBWWe08PDQ/jvkSa9cGLkeowaNQLLlgFTp8rojRBC5C4mJgampqbyDkNEUlISNDQ00LhxY3mH
2241
IiIgIAABAQFSOZdcu9UmJibC2NhYuG1kZIQbN25AW1sbmzZt+uTrP0wYBUUF2PbvNmw7dR9zRrdH
2242
VBSwciUvgRBCao/o6GjcuHGjxiUMPT09LFu2TOTvUk3g6OgoMtJ9yZIlYp9Lrn9OpdlPuH69+pj2
2243
+TT4vFqP4GDgxg3g66+BnBypXYKQOsnLywtdunSBmpoa9PX1YW9vj40bN8otns2bN8PNzU0m5/b2
2244
9sby5cuxcuVK7Nmzp9zj9u/fj9WrV2PkyJHw8vICACgrK2PgwIHw9Ky9HXDkmjAMDQ0RHx8v3I6P
2245
j4eRkVGlX+/h4SFS1Pr2829xMOIg6qlm4Px5QEMD6NkTeP5cmlETUnesXr0aP/74IxYsWICXL1/i
2246
5cuX2LRpE65evYr8/Pxqj+fu3btV+htRFZmZmVi6dCkWLVqEn3/+GRs2bEBKSkqp4548eYLU1FT8
2247
9NNPWL9+Pb777jvExMQAADp37oyLFy/KJD5JBQQESF76YdUoJiaGWVlZCbcLCgpYq1atWExMDMvL
2248
y2PW1tYsMjKyUucCwNi9e6X2jzk2hq0IWsEYY6y4mLHff2fM2Jix27el8x4IkZZq/vhVWUZGBlNV
2249
VWXHjh2r8LgVK1YwMzMzpq6uztq1a8eOHz8ufE4gELCnT58Kt8ePH89+/fVX4fbKlSuZoaEhU1dX
2250
Z23atGF+fn4V7l+2bBkLDw+X5tsUOnnyJBszZoxwe9q0aezQoUOljvP29mZGRkbC7U6dOrHDhw8L
2251
t+fMmcOioqJkEmNVlHd/SXLfVVsbhpubGy5fvozU1FQYGxvjt99+w8SJE7Fu3Tr069cPRUVFmDx5
2252
Mtq2bVvpc3p07QrHiRPh+N9/wLvqrZ8dfkZvz974ocsPaFy/MRYtAszNAScnYMcOYPBgWb1DQmqX
2253
69evIy8vD87OzhUeZ25ujitXrsDAwACHDh3CmDFj8PTpU+jr65c6ViAQCKuiHz16hPXr1yM0NBQG
2254
BgaIi4tDYWFhufsBICQkBIsWLarS+4iOjsbWrVvLfd7e3h7Ozs5ISEiApqamcL+mpiaioqJKHT9g
2255
wACcPXsWAF+5LikpCebm5sLnra2tcevWLZF9NYFUGr/FTjVyBoCx6GjG2rdnbMoUxvLyhM+5eLmw
2256
f4P/FTk+OJixZs0Y++cfXvIgRN4+9fEDpPMQ1549e5iBgYHIvq5duzJNTU3WqFEjFhgYWObrbGxs
2257
2MmTJxljpUsYEyZMEJYwoqKiWNOmTdnFixdZfn6+8Jjy9jPGmJOTU6nrPXr0iA0fPpw5OjoyNTU1
2258
NmjQILZx48Yqv9/ly5ezuXPnCrcXL17MFi5cWOFrTp06xZydnUX2nTx5kv31119Vvr60lXd/SfJn
2259
X7H7EJmaAlevAsnJQJ8+/CeART0W4c9rfyK/6H0da5cuwLVrwLZtwMyZwLsvLITUWNJKGeLS0dFB
2260
SkoKiovfr2p57do1pKenQ0dHRzh/m6enJzp27AgtLS1oaWkhPDy8zLr/j5mbm2PNmjXw8PCAvr4+
2261
3NzchN/Wy9oP8LFbH0pLS8P06dPh6ekJf39/9O7dG3v37sX06dOr/H7V1dVF5qTLzc2FtrZ2ucdn
2262
ZGRg165d2Lt3r8j+Ro0ayaV9pzoodMLw8PBAwK1bwLFjvHXbzg64dw+dmneCVVMrbL0lWgw1MeH5
2263
JToaGDgQyMyUT9yEKIKuXbtCRUUF3t7e5R4TGxuLb7/9FuvXr0daWhrS09NhZWUl/MPbuHFjvHnz
2264
Rnh8UlKSSO9INzc3BAUFITY2FgKBQDjmqrz9ysqitejr16/HzJkz0bBhQwBAXl5eqXEQ0dHRWLhw
2265
YbmPEydOAADMzMxEEl1KSgoMDQ3LfN+MMaxcuRLbtm2DmpoaYmNjhc9lZmZWmGjkRRqN3go9vbnI
2266
m1+2DLCyAnr3Btavx4reK9B/X3+Msx4HdRV14WEaGsDp08D//gd06wb4+PBEQggRpampCXd3d8yY
2267
MQOMMfTt2xeqqqq4d+8ect71V8/JyYFAIICuri6Ki4vh6emJ8PBw4TlsbGywb98+LFu2DBcuXEBg
2268
YCDs7OwAAI8fP0ZCQgIcHBygoqKChg0bgjFW7n4AMDAwwOvXr6GmpgYAyM7ORrt27QAAERERsLS0
2269
RP369UXeR6tWrbBixYpPvt+ePXti/vz5wu2wsDDhdEVPnz5Fq1athMlu7dq1GD58ON6+fYubN28i
2270
NzcXLVu2BMCTYlXaYqtLyXgMScZhKHYbRlnCwhgzNWXsf/9j4w+6sf/z/78yDysuZuzff3m7xvXr
2271
MgyUkHIoysdv3759zM7OjjVu3Jjp6emxLl26sK1btwrbF3755Remra3NdHV12Zw5c5ijoyPbvn07
2272
Y4yx0NBQZmlpydTV1dnYsWPZqFGj2OLFixljjN27d4/Z2dkxdXV1pq2tzQYPHsySkpLK3c8YY9u3
2273
bxf2mGKMsejoaLZmzRp25MgRtmbNGlZQUCDRe/X09GRLly5lS5YsYXv37hXu79ixIwsLC2OMMRYU
2274
FMSUlJSYQCBgAoGAKSkpsYSEBOGxkydPZrm5uRLFIQ3l3V+S3HcKvURruaGnpwPjx+Ptq+f4vPdT
2275
+C18AAM1gzIPPX0amDgRWLcOGDlShgET8hFJlsqsqzIyMvDXX39h2bJl8g6lTG/fvsWiRYvw999/
2276
yzuUcu8vSe47xW/DKKubmJYW4O2Nhs5f4/qmAuxbM6nccwwaBFy8CMybx2u16PNLSM2lqakJXV3d
2277
SjWqy4OXlxemTZsm7zDKJI02jNpZwvjA67MnkDNyGPK++xYtVqwvd3KppCQ+RqNdO74wk4qKtCMm
2278
RBSVMMTDGMO2bdswtYbNMBofH4+wsLBPjlupLrIoYdT6hAEAxy6shcmMhbBp2QVKnnuA5s3LPC4n
2279
Bxg7FkhJ4R2vdHWlGTEhoihhEFmiKikxufSZhQWLOuOmaQPA1pY3XJRBVRU4cgTo2hWwtwceParm
2280
QAkhpAZT6IRRbhvGRwQCAdYO3ojBn4UiaedaYNYs4IcfgLdvSx2rpASsWgUsXMiHdvj7yyBwQgip
2281
ZtSGUcXQ/7j6B85EncGlIUehNG068Pgx4OUFlNNn+tIlwM0NWLECmFR+uzkhYqEqKSJLVCUloZ+6
2282
/oTC4kL893gPcOgQ8P33vBjx33/AB9MflPjyS+DyZWD5cuDnn8s8hBBC6ow6VcIAgKdpT2G/3R6B
2283
EwLRVq8tEBUFTJgANGgA7NxZ5rDvlBTAxQVo2hTYsweoYSswEgVFJQwiS1TCkAIzbTP8/uXvcDvq
2284
htyCXKB1ayAwEBgwAOjcmc9O+NEvU1eXj9Vo3Bjo1Yt3wSWEkLpGoRNGZRu9PzbVdira6rXF92e/
2285
5zvq1eMj9wICgI0b+cyEiYkir1FRATw9gSFDeA+qu3clj58QQqoLNXpLEHp2XjbsttlhgcMCTLCZ
2286
8P6JggLeaLF+PfDnn8C4ccLFmUp4efHmj127eG4hRBxUJUVkiQbufUAaH7aIVxFw3O2IC2MvwMbA
2287
RvTJ27eBKVMAbW1g0ybAzEzk6evXgWHDgEWLePIgpKooYRBZojYMKbNsaon1A9bD2csZSdkfNUx0
2288
7AjcuAH068dXX/rzT5FVl7p25QsybdrEh3XQgkyESC4mJkbeISiEpKQkkXVGqkudThgAMMJyBKZ0
2289
nAJnL2e8KfjoP0BZGZg7F7h5Ezh/ni/QFBYmfNrUlCeNx4/5PFRZWdUcPCFyZGVlhcDAQKmdLzo6
2290
GsHBwVI7X22mp6eHP/74o9qvW+cTBgD82vNXtNFtg/He41HMyhhs0aoVTxg//gj0788byF+/BsAX
2291
ZPLxAVq2BBwcgA8W3iJE4ZmYmMDPz0+47eXlBW1tbQQFBSE8PBw9e/aU2rU2b94MNzc3qZ3vQ97e
2292
3li+fDlWrlyJPXv2lHvcnTt3MHfuXJnEIO41zczMoKKiAn19fXh6egLgKw8OHDhQuF1txF5JQ86k
2293
Hfrbgres+47u7EffH1lxcXH5B758ydiYMYwZGTF26BBfiYnxH3//zRdkCg6WamikllKEj5+JiYlw
2294
waJdu3YxHR0ddl0GK47duXOH/ffff1I/L2OMZWRkMFtbW+G2vb09S05OLnXc6tWrmYuLC5swYYJM
2295
4ihLZa65ZcsWFhsbW+biUGPHji33deXdX5LcdwpdwhC3W21ZVJRVcNL1JC7FXMKywAoWZykZvbdv
2296
H7B0KdC3L/DwIQQCYPZs3qYxaBBw+LBUwiJE7hhj2Lx5M+bOnYvz58/D3t4eQOnSh4mJCVavXg1r
2297
a2toamrC1dUVeXl5APhypx07dkSTJk0wYsQIjBw5EosXLxa+9vTp0/jyyy9lEn9gYKBwGVcAsLa2
2298
hn8Zk8TNmTOn2qcmr8w1GzRogBYtWpRazxzgVVNPnjyp1LVoTW8J3/zHtBpp4fyY8+i+szs0Gmrg
2299
hy4/lH9wz568PWP9eqBHD2DyZODXXzFkiBrOn+fjNZ484VOKfNQrlxCFsmHDBly9ehWXLl1C+/bt
2300
hfsFAoFwjeuS7cOHD+PcuXNQUVGBg4MDdu3ahYkTJ8LFxQVz587FjBkzcPLkSbi6umLBggXC14aE
2301
hGDRokVViis6Ohpbt24t93l7e3s4OzsjISEBmpqawv2ampqIiooq8zVMwl5rlY2pKtcMCQlBXl4e
2302
srKy8Nlnn2HIkCHC56ytrXHr1i2Ym5t/MjZprOmt0AlDFvTV9HFx7EX02NkDjZQbYernFSzSoqwM
2303
/O9/fG3X+fP5JIarV6Pj8OEIDhZg8GA+RfqWLXzmEUKqQrBEOt80mLv4fwQZY7h48SK+/PJLWFlZ
2304
ffL4H374AQYGfDnkwYMH486dOwgODkZRURG+f9f/3MXFBXZ2diKve/PmjUjyAYDHjx/j119/RXJy
2305
MkJDQ+Ho6IiBAwdi+vTpAIBWrVphxYoVn4wpIyMDDRs2FG43aNAAr9+1QX7s4xg+lpWVhSlTpiAs
2306
LAwuLi74888/ER8fj/j4eHTr1q3SMVXlmr1794aLiwsAwMbGBj179hQmQC0tLTx+/LhK15MEJYwy
2307
tNRsCb9xfuizpw/yi/Ix025mxS8wMODDwIOCeB/bdetg+PffCArqhNGjea3V0aOAjk71xE9qB0n+
2308
0EuLQCDApk2bsHTpUkyZMgXbt2+v8PiSZAEAjRs3xvPnz5GUlARDQ0OR44yNjUW+WRcVFYk8n5aW
2309
hunTp+PMmTNo2LAhhg4dit27d0NDQ6PK70FdXR2pqanC7dzcXOjr65d57Ke+7Xt6emLt2rXQ19eH
2310
t7c3rl27hhcvXmDYsGFVjquy1/ywRKKlpYWAgAAMHToUANCoUSPk5+eLfe2qooRRjtY6rREwPgC9
2311
PXsjvygfs7vO/vSLevTg1VS7dgFDhkDVyQlH//0dP68zQteuvDdV69YyD50QqdLX14efnx969eqF
2312
GTNmYMOGDVV6fbNmzZD40VQ7cXFxItUoH9fPr1+/HjNnzhSWDPLy8tD4o1k/K1v9Y2ZmhtDQUOH+
2313
lJQU2NralvmaT33b/+6771CvXj0AwNChQ7Fy5Uo4OjpWOabKXnPv3r04efIkDh06BADIyckR+V1l
2314
ZmZCW1u7wpiliRJGBUy1TBEwgSeNNwVvsKjHok/eUKhXj7dnjBgBrFqFerbW+HPWLLT9fj66d1fF
2315
oUN8AkNCFEmzZs2ESWPOnDn4+++/P/makm/OXbt2Rb169bBu3TpMnz4dPj4+CAkJEWnkNjAwwOvX
2316
r6GmpgYAyM7OFjZUR0REwNLSEvXr1xc5f2Wrf3r27In58+cLt8PCwrBq1SoAwNOnT9GqVSvh57qs
2317
b/tRUVEwMzODkpKSMFmUePbsmbATQFVi+lBZ1yyJy8TERFgF9+bNGyQnJ4v83pKSktC2nPV8ZEGh
2318
e0lVhxYaLXB5wmUcijyEWWdnoai46NMvAgB1dWDZMj7FyJMnmLSqDS6N24UR3xRj1y6ZhkyITBgb
2319
G+PSpUs4cuQIFi369Jenkkbx+vXr49ixY9i+fTu0tLSwb98+DBo0CA0+aNjr1asXbt68Kdz+7rvv
2320
cP78eRw9ehQXL17EypUrxY5bVVUV8+fPx7Jly/Dbb79h/vz5aNq0KQBg+PDhuHPnDgBg3bp12LFj
2321
BwICArBkyRJkvRuJO2TIEJw/f77Mc3fu3FnsuCq6Zklc3bt3R1JSEtasWYNffvkFXl5eIiWtO3fu
2322
wMHBQaIYqkTsDrlyVt2hZ+RmsN67ezPnA84sJz+n6icIDmasWzeW26YDm2Rwmi1aWMyKiqQfJ1Ec
2323
Cvzxk5idnR3btWuXcDs9PZ398ssvcoyofHl5eSwwMLDU/pCQEObj4yOHiLjc3Fw2e/bscp8v7/6S
2324
5L6jEkYlaTTUwJnRZ6Cuoo7enr2RnJNctRN06QJcuYKGq37DZo35GLGuJ9x7X0FurmziJaQmCQwM
2325
xIsXL1BYWIjdu3cjPDwcX331lfB5TU1N6OrqIiUlRY5Rlu348ePo1q1bqf2RkZHoJcf6ZS8vL0yb
2326
Nq16Lyp2qpEzAMzd3Z35+/tX63WLi4vZL36/sJb/tGRhz8PEO0lhIcvbuou9Um3JAjUHsWS/u9IN
2327
kigEBf74VdmWLVuYvr4+U1NTY9bW1uzMmTOljikuLmZbtmyRQ3SKJy4ujnl7e1d4zMf3l7+/P3N3
2328
d5fovqvT05tL4nDEYcw8MxP/fvUv3NqLN/8Ne5uHcy6b8Pn5FVAe4AStf5fweatInSDve5jUbnJb
2329
DyMnJwfx8fEQCAQwMjKCqqqqWBeTpprwYbv38h5cDrpgWNthWNF7BZSVxOt0dnBbNp797x/Mrvcv
2330
Grh9wxfZaNlSytGSmqYm3MOk9qrWhJGdnY2tW7fCy8sLKSkp0NfXB2MML1++hI6ODkaPHo2pU6cK
2331
u8FVt5ryYUt9kwq3o27IK8rDvmH7YNTESKzzXL0KfDssBZ42f+Pz0M3A8OHAwoWUOGqxmnIPk9qp
2332
WhdQGjp0KNTV1XHq1ClER0fj+vXrCA4ORkxMDE6fPg1VVdVqn6irJtJprIOzo8+ib6u+6LSlE04/
2333
Pi3WeRwcgFPXdTEmbjkWff0IxVragK0tMH06zZlOCKkRqA1Diq7GXcWoY6MwrO0wrOy9EirKKlU+
2334
R0YG8M03QMOGgNe6FKht+RvYTCWO2qgm3sOk9pDLEq0FBQWl9iUnV7FLaR3h0MIBt6fdRmxGLDpv
2335
7YzbSberfA5NTeDsWaB5c8DBWRdx05fzGQy135U4Jk/m24QQUs3KTRj+/v4wMjKCgYEB+vbtK7LW
2336
bt++faslOEWk3UgbR0ccxbxu89Bvbz8sCViCgqLSSbci9evzQsW4cXzt8JAYXWD5cr4WbIsWfM6q
2337
b74Bbt2S0bsghJDSyk0Y8+bNw7lz55CSkoJvv/0WTk5OuH79enXGprAEAgHGWo/F7Wm3cSPxBrps
2338
64J7L+9V8RzATz/x5TYGDACOHQOf7tbdHYiJAbp3B4YO5VPhXroEUNUGIUTWyhug0b59e5Ht8PBw
2339
9tlnn7Hjx48zGxsbsQd+SEsFodcoxcXFbNutbUz3D1224MICsaYVuXWLMUNDxlauFK4Iy+XlMbZj
2340
B2Nt2jBmZ8fYsWOM5htRHIpyDxPFVN79Jcl9V26jd6dOnXD69GmR+e0TEhIwcOBAPH36tNwFSKqL
2341
ojUYvnj9Aj+d/wnX4q9hXf91GPjZwCq9PiEBGDyYN2Ns3PjRgkxFRYC3N7BiBZCTA8yZA4wZAzRq
2342
JN03QaRK0e5holiqdRzGhQsXoKenBxsbG5H9GRkZWLduHX799VexLlgZOTk5mDFjBlRUVODo6IhR
2343
o0aVOkZRP2wXnl7AjDMz0EG/A9b0WwNjDeNKv/b1a2DUKP7z6FFAS+ujAxgD/P2Bf/4Bbt7kXXJn
2344
zADKWSyGyJei3sOyFBMTA1NTU3mHIVdJSUnQ0NAotf5HVVVrLyknJ6dSySIsLAyampoyTRYAcOzY
2345
MYwYMQJbtmzByZMnZXqt6uZk5oT7391H+6btYbPZBu4B7sjJz6nUa9XUgOPHARsbwN6erxkuQiAA
2346
vvwSOHUKuHwZePUKsLAAJk0C7t+X/pshdZqVlRUCAwOldr7o6GgEBwdL7XyKSk9PD3/88Ye8wyhT
2347
lWarnTx5stgXmjRpEvT19UUWkQcAX19fWFhYoHXr1sJFTRITE2FszL95f7xgSW3QULkhPBw9cHva
2348
bUSlRqHNujbYc3cPilnxJ19brx7w99/A7Nm83TsoqJwDLSx43VVUFGBmBvTrxxvIfX2pgZxUmomJ
2349
Cfz8/ITbXl5e0NbWRlBQEMLDw9GzZ0+pXWvz5s1wcxNvXrZP8fb2xvLly7Fy5Urs2bOnzGP279+P
2350
1atXY+TIkfDy8pJJHB87ceIE9u3bh99++024kqGysjIGDhwIT0/PaomhSqrS4CFJY3dgYCALCwtj
2351
VlZWwn2FhYXMzMyMxcTEsPz8fGZtbc0iIyPZnj172OnTpxljjLm6upZ5viqGXqNdjbvK7LbasU5b
2352
OrHLzy5X+nXnzjGmp8eYp2clDn77lrHduxmztmasbVvG1q1jLCtL/KCJxBThHjYxMWF+fn6MMcZ2
2353
7drFdHR02PXr16V+nTt37rD//vtP6udljLGMjAxma2sr3La3t2fJyckix0RFRQmvn5yczDQ1NVl0
2354
dLRM4imRnp7OVFRUWG5uLisuLmba2trs2bNnwufHjh0r0fnLu78kue+qVMJwd3cXOzH16NEDWh9V
2355
ut+8eRPm5uYwMTFB/fr14erqihMnTmDYsGE4evQoZsyYgSFDhoh9TUXRzbgbrk++jh+7/IgJ3hPQ
2356
b28/hD4P/eTr+vblTRb/93/A4sVAcUUFFBUVPrDj9m1gwwYgIICPGp81C4iMlNp7IbUPYwybN2/G
2357
3Llzcf78eeGSpB+XPkxMTLB69WpYW1tDU1MTrq6uyMvLA8Crszt27IgmTZpgxIgRGDlyJBYvXix8
2358
7enTp0WWHpWmwMBA4XKvAGBtbQ1/f3+RYyIiIoTVQLq6ujA3N8ctGY9z0tTUxK1bt9CwYUMIBAIU
2359
FhaKtC3o6enhSal6Z/mq0vSqQ4cOlerFP6x6AgAjIyPcuHEDjRs3xo4dOz75eg8PD+G/HR0dRRZj
2360
VzRKAiWM7jAawy2HY3vYdjh7OcPeyB5Lv1iKdnrtyn2dpSVw4wbg7Mxrn3bu/ETnKIEAcHTkj4QE
2361
YMsWoHdvoG1bYOZMfiJlWuqdvLdhwwZcvXoVly5dEqlSLlmC9cPtw4cP49y5c1BRUYGDgwN27dqF
2362
iRMnwsXFBXPnzsWMGTNw8uRJuLq6YsGCBcLXhoSEYNGiRVWKKzo6Glu3bi33eXt7ezg7OyMhIQGa
2363
mprC/ZqamoiKihI5dsCAATh79iwAniCTkpJgbm5epXiqElMJS0tLAMCVK1fg6OgIExMT4XPW1ta4
2364
deuWWHF8KCAgAAEBARKdQ6ii4kdBQQGbMGGC2MWXj8XExIhUSR05coRNmTJFuL1nzx42a9asSp3r
2365
E6ErvJz8HPbHlT+Y3h96bOyxsexRyqMKj3/zhrGRIxmzt2fsxYsqXiwvj7EDBxjr3p0xIyPGli4V
2366
4ySkqj55D/PWJskfEmjZsiVr0qQJGzp0KCsWGQQkWl1Vsr1v3z7h9vz589n06dPZ5cuXmaGhochr
2367
u3fvzhYvXizcdnJyKnXtR48eseHDhzNHR0empqbGBg0axDZu3Fjl97B8+XI2d+5c4fbixYvZwoUL
2368
yz3+1KlTzNnZucznMjMz2fDhw5mZmZnwnHFxcezq1atVjqvE0aNHmaurK4uKihLZf/LkSfbXX3+J
2369
fd7y7i9J/naWWyX1+vVrDBo0SOJFzitiaGiI+Ph44XZ8fDyMjCo/PbiHh4f0MmcN07h+Y8xzmIeo
2370
76Ngrm0Ohx0OcD3iWu6I8UaNgP37AScn3oMqIqIKF2vQAHB15S3op08DcXG80dzNjY8ir7Cui8iM
2371
tFKGBAQCATZt2oRHjx5hypQpnzz+w3FbjRs3xuvXr5GUlARDQ0OR44yNjUWqX4qKikSeT0tLw/Tp
2372
0+Hp6Ql/f3/07t0be/fuxfTp06v8HtTV1UWulZubC21t7TKPzcjIwK5du7B3794yn/f09MTatWvx
2373
5MkTODiIt5zcAAAgAElEQVQ44Nq1awgJCSlzCdfKGjZsGLZu3Yr+/fvj2bNnwv2NGjVCfn6+2Of9
2374
WEBAgEitjDjKrXvo1asXxo8fjxkzZkh0gYp06tQJUVFRePbsGZo3b46DBw/iwIEDlX69pG9eEWg0
2375
1MD/9fo/zLafjU2hm9Bvbz90at4Jv/T4BfZG9iLHKikBv/0GtG4NfPEFsGcP7xxVJdbWvJrqjz+A
2376
vXuBH38E3rwBpkwBJkwAPviDQOoGfX19+Pn5oVevXpgxY4awN09lNWvWDImJiSL74uLiRKpalD+q
2377
Bl2/fj1mzpyJhg0bAgDy8vJKjUuobPWPmZkZQkPftwmmpKTA1ta21PGMMaxcuRLbtm2DmpoaYmNj
2378
0fKj2aG/++47Yc/NoUOHYuXKlSJV4VWpkvLx8cHy5ctx9epVqKmpoWnTpjhy5Ajmzp0LAMjMzCw3
2379
sYmjpNp+yZIl4p+kvKKHmZkZO3bsmNhFl4+5urqyZs2asQYNGjAjIyO2Y8cOxhhjZ86cYZ999hkz
2380
MzNjy5cvr/T5Kgi9VnuT/4atv7metfynJfty95fszOMzrKi49HQggYGM6esztmGDhBcsLmYsOJix
2381
yZMZ09RkzMWFsTNnGCsslPDERBHu4Q+rneLi4pipqSmbPXt2qefK2nZ3d2djxoxh+fn5rEWLFmzt
2382
2rWsoKCAeXt7swYNGohUSY0bN45lZ2cLt+fNm8ciIyMZY3xaop9++kns9/D69WuRqvAOHTqwly9f
2383
MsYYe/LkibCq7d9//2WhoaEsKSmJ3bhxgwUEBDDGGHv8+DErKmfKnWnTpokd19mzZ9miRYsYY3wK
2384
IWNjY3bu3Dnh82vXrmUXL14U+/zl3V+S3HflvvL58+esS5cu7Pjx42KfXJYAMHd3d+bv7y/vUOQi
2385
vzCf7b6zm1lvtGYW6yzYppBNpeapiori00z9+KOU/r5nZTG2eTNjnTox1qIFYx4ejMXFSeHEdZOi
2386
JQzGeDuksbExW7hwITM1Na0wYXh4eAi7hoaGhjIbGxumpqbGhg8fzoYNG8aWLl0qPHb79u0ir42O
2387
jmZr1qxhR44cYWvWrGEFBQUSvQ9PT0+2dOlStmTJErZ3717h/o4dO7KwsDAWFBTElJSUmEAgYAKB
2388
gCkpKbGEhATGGGMWFhbs7NmzZZ5327ZtEsW1fv169t9//7GffvqJbdq0SeS5yZMns9zcXLHP/fH9
2389
5e/vz9zd3WWTMBhjLCsriw0aNEjsk8uSInzYqkNxcTG7FH2JDd4/mOn9occW+S1iiVmJwufT0hj7
2390
4gvGBg1i7IMvcJK7fZuxGTMY09JirH9/xry8GJPg5q6L6vI9bGdnx3bt2iXcTk9PZ7/88oscIypf
2391
Xl4eCwwMLLU/JCSE+fj4yOSaubm5wpKcuGRRwqhwHIa6ujqOHTsmfn0XkTmBQIAvTL/ASbeTuDrp
2392
KjLfZsJqgxVGHR2FoNggaGoy+Pry6aR69OA9aaXCxobPvZ6QwCe42rYNMDTk81cFB9NociIiMDAQ
2393
L168QGFhIXbv3o3w8HB89dVXwuc1NTWhq6uLlJQUOUZZtuPHj5fZqB0ZGYlevXrJ5JpeXl6YNm2a
2394
TM4tEbFTjZyhjldJVSTtTRpbc30Ns1hnwdqua8v+Df6Xpb1JZ6tW8WnSQ0NldOHYWMZ+/52x1q0Z
2395
++wz/m+qsiqXAn/8qmzLli1MX1+fqampMWtra3bmzJlSxxQXF7MtW7bIIbqaJS4ujnl7e0t8no/v
2396
L2lUSX1yTe/27duXmt1QQ0MDnTt3xq+//godHR2ZJrTy0Eyfn8YYQ2BsIDbd2oSzUWcxrO0wtMme
2397
jj9nd8a2rQJIeRzmhxfmpYxdu4DDh4HPPwfGjweGDQMknIGzNqF7mMhStU5vXmLevHlQVlbGqFGj
2398
wBiDl5cX3rx5AwMDA1y9ehWnTp0S68KSog9b1bzKeYWdt3di863NUC5Sx8vzEzC792i4z22KDwbr
2399
Sl9uLnDyJE8ewcF8lcBRo3i/3zo+opzuYSJLckkYHTt2xO3bt8vc1759e9yX07TZAoEA7u7uCj8l
2400
SHUrZsUIeBaADdd243jkCRgV9cSfoydgaLtBaFCvwadPIInnz4GDB/kIw/h4YORInjzs7CDbrFUz
2401
UcIgsvTx/VUyRciSJUtklzA6dOiArVu3okuXLgD4hIFTp07F3bt3y0wm1YU+bJJ7npqN/nOOIk57
2402
F+o1i4Bbe1dMsJ4A22a2InMEycTjx8CBAzx5FBbyxDFqFJ/Tqo6ge5jIklxKGCEhIZg4caJwSVZ1
2403
dXVs374dlpaW8PHxwYgRI8S6sKTowyYdRUXATz8Bp67EYNAvnjgd74n6SvXhauUKVytXWOhayDYA
2404
xoCwMJ44vLyApk154nB1BYwrvxqhIqJ7mMiSXBJGiczMTDDGRGZ9lCf6sEnX+vXAsmXA4cMM9U1u
2405
wivCC4ciDkGvsR5crVwx0nIkTLVkvHRmUREQGMhLHkePAu3aAcOHA19/zbvs1jJ0DxNZkkXC+GT/
2406
qqSkJDZp0iTWr18/xhhjEREREo9ulAZQt1qpO3uWL8hUMhC2sKiQBcQEsOmnpzPdP3RZl61d2D/X
2407
/2FxGdXQVfbtW8ZOnmRs3Dg+ONDBgbE1axh7N/q2NtDS0mIA6EEPmTy0tLRE7rdq6Vb71VdfYeLE
2408
ifj9999x7949FBQUoGPHjggPD6/oZTJH385kIzwcGDSIzzPo7v6+LbqgqACXYi7BK8ILpx6dgqmW
2409
KVwsXOBi4YK2ejJud8jLAy5e5F10T57k7RzDhwPffANUYXZjQoiMq6Q6deqE0NBQkQZuGxsb3Llz
2410
R6wLSgslDNl58YKvo2RmBuzYAbybMFSooKgAgbGBOP7wOLwfekNdRV2YPDo17yTbBvP8fJ48jhwB
2411
TpwA2rR5nzxqeZsHIdIgyd/OTy7RqqamhtTUVOF2cHAwNDQ0xLoYUQwGBnwF18JCvhhfcrLo8/Xr
2412
1UfvVr2xbsA6xM2Ow+6hu8HAMOb4GLRY0wLfn/0e556cw9vCt9IPrkEDYMAAnsmSkvj6tOHhQMeO
2413
fCGQVauAR4+kf11CyKdLGLdu3cL333+PiIgIWFpaIjk5GUeOHIG1tXV1xVgmKmHIXnEx/3u8fz9f
2414
V6ld+SvFAgAYY3iQ8gDeD73hE+WD8FfhcDRxxMDWAzGg9QAYNZFh9VFBAc9yJ04A3t6AujofJDh0
2415
KNC5M18shBAi+15SBQUFePTuW1ubNm1Qv359sS4mTTRwr/rs3g3Mm8cTR58+lX9d6ptU+D7xhU+U
2416
D849PQfjJsYY0HoABrYeCHsje9RTqiebgBkDbt0Cjh/nySM9ndexDR3KR5g3kPEARUJqIJkO3Dt6
2417
9KgwE5VVJz1s2DCxLigtVMKoXpcvAyNGAEuXAt9+W/XXFxYX4kbCDfhE+cAnygeJWYno06oPnFo5
2418
wcnMCS00Wkg/6BKPH78veURGAl99xZNH//5Akyayuy4hNZBMShgTJkyAQCDAq1evcO3aNXz55ZcA
2419
AH9/f3Tr1g2nT58WP2IpoIRR/aKigIEDgSFDeFNBPQkKCPGZ8bgQfQEXoi/gYvRF6DTSgZOZE5xa
2420
OcHRxBFNVGT0h/zFC+DUKZ48goKArl35mxo4kLfyE1LLybRKysnJCZ6enmjWrBkAICkpCePHj8f5
2421
8+fFuqC0UMKQj7Q0Pumspiawbx+gqir5OYtZMe68uIMLT3kCuZF4A9b61nBq5YS+Zn3R2bAzlJVk
2422
MFFhdjZw4QJvoDlzBtDS4n2KBw4EHByAGlD1Soi0yTRhWFhY4MGDB8JqqeLiYrRr1w4PHz4U64LS
2423
QglDfvLzgWnTgLt3+Zd1aQ/Czi3IRVBcEC+BPL2AZxnP4NDCAb1a9oKjiSNsm9lKP4EUF/N2Dx8f
2424
nkCiowEnJ55A+vcHdHWlez1C5ESmCWPWrFl4/PixcHrzgwcPonXr1li7dq1YF5QWShjyxRivllq/
2425
no+l69hRdtdKeZOCwNhABDwLQMCzAMRmxqKbcTc4tnQUJpD69aRcGkhK4qUOHx/Azw+wtHxf+ujQ
2426
oU7OrktqB5kmDMYYjh8/jqCgIABAz5494eLiItbFpIkSRs1w5Ajw3XfA9u28baM6pLxJQVBsEAJi
2427
eQJ5lvEMXY26wtHEEb1a9oJtM1uoKKtI74J5eXyOq9On+SM/H+jXjz/69OFVWYQoCJkkjPJ6R1X1
2428
GFmhbrU1x82bvNPR3LnA7NnV/+U79U0qguKCEPAsAIGxgXic+hg2BjZwaOEAB2MHdDXqCj1VPelc
2429
jDHe6+rcOcDXF7hyBbCy4snjq6+ATp0k6w1AiIzItFttr169MGjQIDg7O+Ozzz4Tee7Ro0fw9vaG
2430
j48PAgMDxbqwpKiEUbPExgKDBwPdugFr18q3vTg7Lxs3Em/gWvw1XI2/iuCEYBioGcDBmCeQbsbd
2431
YKFrIZ0vO2/f8qTh68uTyPPnvNRRUgKphbPsEsUmkxJGXl4e9u3bhwMHDiA8PBzq6upgjOH169ew
2432
srLC6NGjMWrUKDSQ0yAoShg1T1YWX8aisBA4dIj3pKoJioqLEJEcgatxV3E1/iquxV9DZl4muhl3
2433
Q1ejruhi2AWdmneCRkMpTHmTkACcP8+Tx4ULPGGUlD66dy89MRch1UzmI72LioqQkpICANDV1UW9
2434
GlDkpoRRMxUW8mopPz/eXmwq4yU0xPU8+zmuxV/DtfhrCHkegttJt9FCowXsDO2Ejw76HSRbtrao
2435
CAgJeV/6CA/n4z769OGTdNnYUPUVqXbVsoBSTUMJo2ZbuxZYvpyvg9Stm7yj+bTC4kKEvwrHzcSb
2436
wsfT9KfooN+BJ5DmPImYa5uLX5WVns7nu/Lz449Xr/hUJb178yRibk69r4jMUcIgNdKZM8D48cB/
2437
/wFubvKOpupe57/Gree3eAJ5zpNIdl42Oht2xufNPodtM1vYNrOFqaapeEkkMfF98rh4kZc2SpLH
2438
l18C7wbLEiJNlDBIjXXvHm8MnzwZWLxY8b9Av3j9AiGJIQhLCkPYizCEJYXhdf5rdDToKEwgts1s
2439
0Vq7ddUmV2SMT8tekkACAnjCKKm+6tULoGUFiBRQwiA1WlISnyy2TRtg2zZARYpDJGqCVzmvcDvp
2440
NsKSwnD7Bf/5MuclrPWtRZJIW922lR9gWFQEhIW9TyDBwYCFBeDoyB/du1MCIWKRScKIi4vD/Pnz
2441
kZCQgAEDBmDevHnCac2HDh0Kb29v8SOWAkoYiuXNG2DcOODlSz7reG2faSPjbQbuvLjDSyLvHs8y
2442
nsFC1wId9DuIPJqqNv30Cd++5QNeLl/mpY+bN3kG7tWLJ5AePWpOtzRSo8kkYfTp0wfffPMNunTp
2443
gu3btyMsLAwnT56Erq6uyHKt8kID9xRPcTHwyy98ae7Tp/kX5rokJz8HEckRuPfynvBx9+VdqNRT
2444
gbWBNU8gTXkSsdC1qHi0el4e74EVEMCTSHAw0Lo1Tx69evEEoq1dXW+NKACZDtyztrbG3bt3hdt7
2445
9+7F8uXLcerUKXzzzTc1ImFQCUMx7dwJ/PwzX5Cpd295RyNfjDEkZCW8TyKv+M/o9GiYa5uLJBGr
2446
plYwamJUdgN7fj4QGvo+gVy/DrRq9T6B9OwJ6OhU99sjNZBMShiWlpa4desWGn4w0OjixYuYPn06
2447
cnJykJSUJF60UkIJQ7H5+/NBfr//DkyZIu9oap63hW8RmRwpUhKJeBWBNwVv0E6vHSybWqKd7ruf
2448
eu1g3MRYNJEUFPAEUlKFde0aYGzM2z5KHiYmit8LgVSZTBLG33//DVtb21LVPbdv38b8+fNx4cIF
2449
sS4oLZQwFN+jR3wCWBcXYOVKWna7MlLfpCIyORKRyZGISI4Q/szJz0Fbvbaw1LOEpZ6lMKkIE0lh
2450
Ie+yduUKfwQF8V/4hwmkQwcaSFgHUC8porBSUviCTLq6wJ490lmQqS5Ky00rnUheRSA7Pxvt9Nrx
2451
h247WOhaoI1uG5hqmKB+XML7BHLlCh8XYm//PoHY2dF/SC0k04SRmJgIwxo4gRoljNojL4+vEx4R
2452
wdfWaN5c3hHVHum56cIk8iDlAR6lPMLDlId4nv0cplqmaKPTBm1026CNThtYKRnA4nE6moTc5Qnk
2453
7l0+E29JAunWDdDXl/dbIhKSWcK4f/8+pk6diuDgYLGDkxVKGLULY3wqkc2b+Sp+1tbyjqh2e1v4
2454
Fk/SnuBhykM8SnmER6n88TDlIeor1YeFrgWs1M3Q81Uj2DzJQYv7sVC9dR8CLS0+H5a9Pf9pbU1L
2455
2SoYmSQMf39/zJw5EydPnoS5ublEAcoCJYza6dAhYOZM3pNq0CB5R1P3MMbwMuelMIk8THnIk0nK
2456
IyRmxMMxvxm+StaAXTzDZ49ToZGUhsIOVmjQvReUunbjSYSmNKnRZJIw1NTUcOPGDVhaWkoUnKxQ
2457
wqi9goN5u8aCBcAPP1BHnpoirzAPT9KeICotSvgzKeEh1O49RJvHqej1oiFsY/NR2LghUqxbo6hL
2458
Z6j36guD7l9BuWFjeYdP3pFJwpg2bRqysrKwf/9+ua2qVxFKGLXbs2e8hNGrF/Dvv4CysrwjIhV5
2459
W/gW0enReJIahdQ716F0MwQ6dx6h1eNktEjOxyPDhnjW1gAZNm0h6NIFBhadYK7TGqaaptJfj51U
2460
SGZtGMuWLcODBw+wb98+sYOTFUoYtV9mJjBiBC9hHDxIUycpqrz0FLwK8EFOkB8a3AyDbkQ0ClkR
2461
woyVEaSfhxhzHWS0bw094zYw1TRFK61WMNU0hamWKfRV9WvkF1ZFJtNeUrt378b48ePFOrkkYmJi
2462
8PvvvyMzMxOHDx8u9TwljLqhsJBXSwUG8ulETEzkHRGRGGNAfDxw8yaKbt5A/vUrqH/nHnI0VRHz
2463
mR7uGTdAkEEezqm/QqogFyaaJsIkIvJTyxRqDdTk/W4UjswSBmMM8fHxaNGihdjBSWr48OGUMOo4
2464
xviaGqtWAceO8Q46pJYpKuIjOW/e5HNk3bwJRESgqLU5Mtq3RnwbA4S3aIRQnbd4kvUMMRkxiEmP
2465
gWoD1VLJxFTLFC01WsJYwxgNlWlJ3I/JNGG0b98e4eHhYgc3adIk+Pj4oGnTprh//75wv6+vL378
2466
8UcUFRVhypQpWLBgQZmvp4RBSpw6BUyaBKxbB4wcKe9oiMzl5fGxICUJJCQEiIvjXXnt7MA6dUJK
2467
25aI0gFiMmMRkxGD6PRoxGTEIDYjFonZidBupI2WGi3RUrMlWmi04P9+t91So6V01nFXMDKtkho/
2468
fjxmzpwJOzs7sS4QFBQENTU1jBs3TpgwioqK0KZNG1y8eBGGhobo3LkzDhw4gNDQUISFhWHevHlo
2469
/m70FiUM8qE7d4AhQ4Bp04BFi6gHVZ2TlQXcuvU+gdy6BaSm8vXRP/8csLXlP9u0QZGAL3gVmxmL
2470
2IxY/vPDf2fEQllJWZg8hD8/+HdT1aa1rg1FpgmjTZs2ePLkCVq2bAnVd9MECAQC3Lt3r9IXefbs
2471
GQYPHixMGNevX8eSJUvg6+sLAFi5ciUA4Oeffxa+Ji0tDYsWLYKfn1+ZJRBKGHXX8+c8aVhaAlu2
2472
1L4FmUgVpaXxxabCwngCCQvjq3ZZW79PILa2QLt2It3tGGNIy00TJo+4zLhSSeV1/msYNzEWJpAW
2473
Gi1g3MQYRk2MYKzBfypaO4okfzs/2Vnx3LlzYp24IomJiTA2NhZuGxkZ4caNGyLHaGtrY9OmTRWe
2474
x8PDQ/hvWhej7mjenE/COmYM4OTEF2SimbvrMG1tvpRtnz7v92Vk8OLorVvAhQt8dsv4eD7Vyeef
2475
A59/DoGtLXQsLaHzbkXEsuTk57xPJBmxiM+KR0BsABKyEhCfGY+ErASoKKvwBFKSSD5IKCX/Vm0g
2476
vzm5StbBkIZySxhpaWkVvlC7CouzfFzCOHr0KHx9fbF161YAfK2NGzduYO3atZU+J5UwSHExsHAh
2477
bwg/fZovQEdIubKzeRL5sCQSHc1LHiWlEBsbnlQqOeliSSklISsB8Vnxoj/fJZSErAQ0VG4oUiop
2478
K7k0rl89gxtlUsKwtbUVnjguLg5aWloAgPT0dLRs2RIxMTHiRQvA0NAQ8fHxwu34+HgYGRlV+Twe
2479
Hh5UsqjDlJR4z6nWrfn6QAcP8vWCCCmTujpfibBHj/f7cnL4tO+3bgE3bvA6zgcPgBYtePKwtuY/
2480
bWwAA4NSjWYCgQA6jXWg01gH1gZlT4BWklREEkl2Ai7FXBJJMI2UG8GoiREMmxiiuXpzGKqL/myu
2481
3hxNVZuinpJ4U9BLo6TxyTaMqVOnwsXFBQMGDAAAnD17FsePH8eWLVsqfZGPSxiFhYVo06YN/Pz8
2482
0Lx5c9jZ2eHAgQNo27Zt5QOnEgb5gJ8f4ObGE8jEifKOhii0ggLg4UPeQ+vOnfePevVEE4i1NS/W
2483
SmEaAsYYUnNTkZCVgOfZz5GYlch/ZvOfJf9Oz01HU9WmPJG8SyzN1T7497sEo9lQs9zGepk2eltZ
2484
WZXqVlvWvvK4ubnh8uXLSE1NRdOmTfHbb79h4sSJOHv2rLBb7eTJk7Fw4cKqBU4Jg3zk4UNg4EA+
2485
Ovz332lBJiJFjPHeFiXJoySZJCbyKq0PSyMdOgBNmsgkjPyifLx4/eJ9EslKxPPX7xNMSWLJL8ov
2486
VTop+feoDqNklzD69u2Lnj17YsyYMWCMYf/+/QgMDJRJY3hVCAQCuLu7U5UUEZGSAgwdymsPPD2B
2487
xjTnHZGl7Gzg/n3R0kh4OL8BS5JHhw5A+/Z8jfVq+hbzOv+1MIGUJJab124iMiQSkYcjZZcwUlNT
2488
sWTJEgQFBQEAevbsCXd39yo1essClTBIefLygMmTgcePgRMnaLZtUs2KioCoKOD2bZ5M7t3jP1NT
2489
eWmkfXvRR9Om1RoeLdFKyEcYA5YuBbZv5yPEO3SQd0SkzsvM5KWP+/dFHw0alE4ilpYyKx7X2YRB
2490
VVLkUw4c4JMX7t4NvOu3QUjNwRhvBykphZQ8Hj8GjI1LJxIzM974LoaSXlJLliypmwlDQUMn1eza
2491
NeDrr/lUIt9/L+9oCKmEggKeND5MIvfuAcnJQNu2fKyIlRUviVha8uRSySlMZFLC2L9/P/r16wed
2492
GjqElhIGqYqYGN6Dqndv4J9/aEEmoqCysni1Vng4EBHx/pGTw9tHShJIycPQsMyxI1JPGCtXrsT5
2493
8+eRn5+PPn36oH///rCzs6sxE3FRwiBVlZHBu9wqKwNeXjLr+UhI9UtLE00gJY+8vFKJRNC3r+yq
2494
pLKysnDx4kWcO3cON2/ehIWFBfr3749+/fpBX19frItKA7VhEHEUFPBqqWvX+HQiclzqhRDZS0kR
2495
Jo+A8+cRcOcOlsTGVl8bRkREBM6ePYvz58/j/PnzYl1UGqiEQcTFGK+WWr2aT1wo5sz9hCikOttL
2496
SkFDJzXEyZN8vMbGjcA338g7GkKqByUMQsQUFgY4OwMzZgA//0wLMpHaT5K/nQo9246Hh4fU5nkn
2497
dZOtLRAcDBw+zJd/zc+Xd0SEyEZAQIDIGkLiqFQJIycnB/Hx8RAIBDAyMhKuvCdPVMIg0vT6NTB6
2498
NB+Me+wYX5OHkNpIJlVS2dnZ2Lp1K7y8vJCSkgJ9fX0wxvDy5Uvo6Ohg9OjRmDp1KtTU5LM8ISUM
2499
Im1FRcCCBbxtw8eHr7NBSG0jkyqpoUOHQl1dHadOnUJ0dDSuX7+O4OBgxMTE4PTp01BVVYWzs7PY
2500
QRNS09SrB/z1FzB3LtC9O18GlhDyHjV6E1KGCxd4FdWffwLjx8s7GkKkR6aN3gUFBaX2JScni3Ux
2501
aaNGbyIrTk5AQACwZAnw6698/XBCFJlMG739/f0xduxY5Obm4vPPP8fmzZthamoKAOjYsSNu374t
2502
0YUlRSUMUh1eveILMhkZ8RlvGzWSd0SESEYmJYx58+bh3LlzSElJwbfffgsnJydcv35d7CAJUURN
2503
mwKXLvH5p774Anj5Ut4RESI/5SaM/Px8WFpaQiAQ4JtvvsGJEycwYcIEeHt7V2d8hMhdw4bAvn3A
2504
V18BXbrwiUIJqYvKneS5QYMGePHiBQwMDAAAlpaW8PPzw8CBA/H06dNqC5CQmkAgADw8eFfbL74A
2505
9uzhCYSQuqTcEsaKFSvw4sULkX1GRka4fPkyfv75Z5kHRkhNNHo0n7BwwgRgwwZ5R0NI9VLobrU0
2506
vTmRl6dPgUGDgH79+Ky3Yq6aSUi1qZYlWi9cuAAnJyexTi5L1EuKyFt6Op/ltlEjvna4urq8IyLk
2507
02Q2DsPT0xOrV68W68SE1HZaWoCvL9CsGR8ZHh8v74gIka1yE8ayZcuwY8cOHDt2rDrjIUSh1K8P
2508
bNkCjB0LdO0KhIbKOyJCZKfcKikVFRU8ePAArVq1qu6YKoWqpEhNc/w48O23wObNwLBh8o6GkLLJ
2509
pEpq586d+Prrr2vMNCCE1HQuLryK6ocfgD/+4EvBElKbVNjofenSJSxevBhXr16tzpgqhUoYpKZK
2510
SOA9qDp14l1vGzSQd0SEvCfTJVrDw8NhZWUl1slliRIGqclevwbc3ICcHODoUd5ATkhNILNeUsXF
2511
xYiMjBTrxITUZWpqgLc3YG3NG8OfPJF3RIRIrsKEoaSkhFWrVlVXLITUKvXqAf/8A/zvf7zbbVCQ
2512
vCMiRDKfXA/DyckJf/31F+Lj45GWliZ81AS0HgZRBN99x6dG//prYO9eeUdD6iqZrodRwsTEBAKB
2513
QPRFAgGio6MlurCkqA2DKJqICN4YPnYsX5jpo48VIdVCpo3eNRUlDKKIXr7kCzKZmAA7d/Kp0wmp
2514
TjJp9K5MVY+/v79YFyWkrtLX5wsyMQZ8+SVf0Y8QRVHuehinT5/G/Pnz0adPH3Tq1AnNmjVDcXEx
2515
Xrx4gdDQUFy8eBFffPEFvvjii+qMlxCF16gRsH8/4O7OF2Q6fRqwtJR3VIR8WoVVUtnZ2Thx4gSu
2516
XLmCuLg4AEDLli3RvXt3ODs7Q01NrdoC/RhVSZHawNMTmDuXN4b37SvvaEhdQG0YhCiwwEBgxAi+
2517
og3oc9wAABFwSURBVN/06fKOhtR2MmnDCA4OhrW1NVRVVdG1a1cawEeIjPTsCVy5wsdszJkDFBXJ
2518
OyJCylZuwpg5cyb++usvpKamYs6cOZg9e3Z1xkVInWJuDly/Dty5wycxfP1a3hERUlq5CaO4uBhO
2519
Tk5o2LAhhg8fjlfUnYMQmdLW5rPd6ukBPXrwSQwJqUnK7SWVmZmJY8eOCeu6PtwWCAQYRhP+EyJ1
2520
DRoA27bx6dHt7YETJ4DPP5d3VIRw5TZ6T5gwQWSEd0miKLFz506ZBnbixAn4+PggKysLkydPLrWu
2521
ODV6k9ru6FHeCL51Kx/sR4g01OpeUhkZGZg7dy62bdsmsp8SBqkLQkJ4spgzhz9oOhEiKZkkjNWr
2522
V5eaQ+pDc+bMqdQFJk2aBB8fHzRt2hT3798X7vf19cWPP/6IoqIiTJkyBQsWLCjz9XPnzsWYMWNg
2523
Y2MjGjglDFJHxMXxOajs7YH16/k64oSISybdarOzs5GdnY3Q0FBs3LgRiYmJSEhIwKZNmxAWFlbp
2524
C0ycOBG+vr4i+4qKijBr1iz4+voiMjISBw4cwIMHD7Bnzx7Mnj0bz58/B2MMCxYsQP/+/UslC0Lq
2525
khYtgKtXgcREoH9/ICND3hGRuqrcRu+SaXB79OiBsLAwqKurAwCWLFmCAQMGVPoCPXr0wLNnz0T2
2526
3bx5E+bm5jAxMQEAuLq64sSJE/j5558xduxYAMB///0HPz8/ZGVl4cmTJ5g2bVq5MQKAo6MjHB0d
2527
Kx0XIYpEXZ03gP/0E1+QyccHaNVK3lERRRAQECC1ZSDKTRglXr16hfoflIHr168vcRfbxMREGBsb
2528
C7eNjIxw48YNkWN++OEH/PDDDxWeR9K53QlRJMrKwL//AuvWAQ4OwJEj/CchFfn4y/SSJUvEPtcn
2529
E8a4ceNgZ2eHYcOGgTEGb29vjB8/XuwLAqiwbYQQUrFZswAzMz7Ab80aYNQoeUdE6opPJoxffvkF
2530
X331FYKCgiAQCLBr1y507NhRoosaGhoiPj5euB0fHw8jI6Mqn8fDw4Oqokid1L8/4OcHDB4MREUB
2531
//d/1IOKVEwaVVPV0q322bNnGDx4sLCXVGFhIdq0aQM/Pz80b94cdnZ2OHDgANq2bVvpc1IvKUKA
2532
Fy8AZ2c+tcj27bQgE/k0mfSSkhY3Nzd069YNjx8/hrGxMXbu3AllZWWsW7cO/fr1Q7t27TBy5Mgq
2533
JQtCCGdgAAQEAAUFQO/eQHKyvCMitVmNH7hXHoFAAHd3d6qSIgRAcTGweDHg5cUXZKLvX+RjJVVS
2534
S5Ysqb0jvctDVVKElLZrFzB/Pl/Rr08feUdDaqIaXSVFCKk+EyYAhw8Do0fzOagIkSaFThgeHh5S
2535
G5BCSG3RqxcQFAT8+Scwbx4tyES4gIAAiceuUZUUIbVUaiowbBigpQXs2weoqso7IlITUJUUIaQU
2536
HR3gwgVAU5MvA5uYKO+IiKJT6IRBVVKEVKxBA2DnTuCbb/hst7dvyzsiIi9UJaWYoRMiF4cPAzNm
2537
ADt28BHipG6S5G/nJ6cGIYTUDsOH86nSXVyAJ0+AH3+k6URI1VAJg5A6JjaWL8jUvTvw33+0IFNd
2538
U2cbvakNg5Cqa9mSL8j07BlPHJmZ8o6IVAdqw1DM0AmpEQoLebWUvz+fTsTUVN4RkepQZ0sYhBDx
2539
KSvzxZimTwe6dQOuX5d3RKSmo4RBSB33/ffAtm3AkCF88kJCykNVUoQQAMDdu7y77dSpwK+/Ug+q
2540
2qrOVklRozch0mNtDdy4AZw8CYwbB+TlyTsiIk3U6K2YoRNSo715A4wdC7x6BRw/DujqyjsiIk11
2541
toRBCJG+xo35qHAHBz6dyMOH8o6I1BSUMAghpSgpAStXAosW8enSL12Sd0SkJqCEQQgp16RJvOeU
2542
mxuwfbu8oyHyRm0YhJBPevQIGDgQ+PprYMUKXgIhikmSv52UMAghlZKSwhdk0tMD9uzhbR1E8dTZ
2543
Rm/qVktI9dHV5Qsyqarydo2kJHlHRKqCutUqZuiEKDTGgN9/B7ZsAU6d4uM3iOKgKilCSLU7eBCY
2544
NQvYtYu3bxDFUGerpAgh8jNyJB8VPnUqX1eDvr/VflTCIIRIJCaGr6vh6Aj8+y+fBZfUXFQlRQiR
2545
q8xMYMQI3t324EGgSRN5R0TKQ1VShBC50tAAfHwAExM+pUhsrLwjIrJACYMQIhXKysCGDcDkyUDX
2546
rnzmW1K7UJUUIUTqTp3i04qsX8+rqkjNIcnfToVunvLw8ICjoyMcHR3lHQoh5AODB/NBfkOGAE+e
2547
AAsX0oJM8hYQECDxQGcqYRBCZOb5c5482rcHNm8GVFTkHRGhRm9CSI3UvDkQGMh7UfXtC6Smyjsi
2548
IglKGIQQmVJVBY4eBbp04QsyPX4s74iIuChhEEJkTkkJ+OMPYP58oEcPgOYMVUyUMAgh1WbqVGD/
2549
ft5zaudOeUdDqooavQkh1e7BAz6dyMiRwLJltCBTdaKpQQghCic5GXBxAZo1A3bvpgWZqgv1kiKE
2550
KBw9PeDiRaBBAz5x4YsX8o6IfAolDEKI3DRsCOzdy6un7O2B+/flHRGpCFVJEUJqhP37gf/9D/D0
2551
BPr3l3c0tVetrJJ6+PAhvvvuO4wYMQLbt2+XdziEEBkbNQrw9uZzUK1bJ+9oSFlqbMKwsLDAxo0b
2552
4eXlhXPnzsk7nBpN0vlhahP6XbyniL8LBwfg6lU+6+0PPwCFhdI5ryL+LmoimSeMSZMmQV9fH+3b
2553
txfZ7+vrCwsLC7Ru3RqrVq0q87WnTp3CwIED4erqKuswFRp9GN6j38V7ivq7aNUKuHaNd711dgay
2554
syU/p6L+LmoamSeMiRMnwtfXV2RfUVERZs2aBV9fX0RGRuLAgQN48OAB9uzZg9mzZ+P58+cAgMGD
2555
B+Ps2bPYvfv/27v3kKbePw7g77J5wcRv5oXSQeVq3qdlmsYUM7Os7ApmESolGRXUX4lB2RUR4ksU
2556
UUT5DTWxTLQ0+6dMqxniBSUVk9C8QOJSMZXNqc/vD2uov8zH5c6Wfl5w/tg8Z3vvw3w+nJ1znvNQ
2557
3zEJIUbkn3+AFy8AJ6exvY7WVkMnIoAA05vL5XK0tLRMeK68vBwSiQQrVqwAABw4cAD5+flITEzE
2558
4cOHAQAlJSXIzc2FSqVCSEiIvmMSQoyMSATcuQP8++/YDZny8oD16w2dap5jAmhubmYeHh7ax0+e
2559
PGFHjx7VPk5PT2cnT56c0WsCoIUWWmihRYdFVwa5gdKCWbiTCqNTagkhRFAGOUvK0dERbW1t2sdt
2560
bW1wcnIyRBRCCCGcDNIwfH190dTUhJaWFgwNDSE7OxuRkZGGiEIIIYST3htGdHQ0AgMD8enTJ4jF
2561
YqSlpWHRokW4desWwsPD4ebmhqioKLi6uuo7CiGEkD+h89EPARUVFTGpVMokEglLSUn55TqnTp1i
2562
EomEeXl5saqqKoETCme6WmRkZDAvLy/m6enJAgMDWU1NjQFS6h/Pd4IxxsrLy5mJiQl7+vSpgOmE
2563
xVOL4uJi5u3tzdzd3VlwcLCwAQU0XS26urpYeHg4k8lkzN3dnaWlpQkfUiBxcXHM3t5+wglHk810
2564
3DT6hjE8PMycnZ1Zc3MzGxoaYjKZjNXX109Yp7CwkG3bto0xxtiHDx+Yv7+/IaLqHU8tFAoF6+3t
2565
ZYyN/fPMxVrw1OHneiEhIWz79u0sJyfHAEn1j6cWPT09zM3NjbW1tTHGxgbNuYinFhcuXGCJiYmM
2566
sbE62NjYMI1GY4i4eldaWsqqqqqmbBi6jJtGOzXIT+Ov2RCJRNprNsZ79uwZYmJiAAD+/v7o7e1F
2567
Z2enIeLqFU8tAgICYG1tDWCsFu3t7YaIqlc8dQCAmzdvYv/+/bCzszNASmHw1OLRo0fYt2+f9sQS
2568
W1tbQ0TVO55aLFu2DH19fQCAvr4+LF26FIsWGeRkUb2Ty+VYsmTJlH/XZdw0+obR0dEBsVisfezk
2569
5ISOjo5p15mLAyVPLca7f/8+IiIihIgmKN7vRH5+Po4fPw5gdk7lNkY8tWhqakJ3dzdCQkLg6+uL
2570
9PR0oWMKgqcW8fHxqKurw/LlyyGTyXDjxg2hYxoNXcZNo2+tvP/obNJ1GXNxgJjJZyouLsaDBw/w
2571
/v17PSYyDJ46nD59GikpKdqpnCd/P+YKnlpoNBpUVVXh1atXGBwcREBAADZs2IDVq1cLkFA4PLW4
2572
du0avL298ebNG3z+/BlhYWGoqamBlZWVAAmNz0zHTaNvGDzXbExep729HY6OjoJlFArv9Su1tbWI
2573
j4/Hy5cvf7tL+rfiqUNlZaV20kqlUomioiKIRKI5d/o2Ty3EYjFsbW1hYWEBCwsLBAUFoaamZs41
2574
DJ5aKBQKnDt3DgDg7OyMlStXorGxEb6+voJmNQY6jZuzdoRFTzQaDVu1ahVrbm5marV62oPeZWVl
2575
c/JAL2N8tfjy5QtzdnZmZWVlBkqpfzx1GC82NnbOniXFU4uGhgYWGhrKhoeH2cDAAPPw8GB1dXUG
2576
Sqw/PLU4c+YMS05OZowx9vXrV+bo6Mi+fftmiLiCmDwt03i6jJtGv4cx/pqNkZERHDlyBK6urrh7
2577
9y4A4NixY4iIiMCLFy8gkUhgaWmJtLQ0A6fWD55aXLp0CT09Pdrf7kUiEcrLyw0Ze9bx1GG+4KmF
2578
i4sLtm7dCi8vLyxcuBDx8fFwc3MzcPLZx1OLpKQkxMXFQSaTYXR0FKmpqbCxsTFwcv2Ijo5GSUkJ
2579
lEolxGIxLl68CI1GA0D3cfOvvUUrIYQQYRn9WVKEEEKMAzUMQgghXKhhEEII4UINgxBCCBdqGIQQ
2580
QrhQwyCEEMKFGgYhP1RUVKCkpASpqanzOgMhU6GGQcgPFRUV8Pf3h1KpRH9//2/XVavVCA4O/uUc
2581
VcnJybh+/fqsZlCr1QgKCsLo6KhOr0vIbKCGQcgPCQkJEIlEGB4exuLFi3+7bmZmJnbs2PHLydr+
2582
ZOLLqTKYmZlBLpcjLy9P59cm5E9RwyBknOzsbCQlJWmnUJhKVlYWdu3apX189epVSKVSyOVyNDY2
2583
ap/PyMiAv78/fHx8kJCQoN1DuHz5MlxcXCCXy3Hw4MEJeyRTZYiMjERWVtZsfExCdGL0c0kRoi/v
2584
3r1DQUEBent70dvbC3d3d7S0tKC4uBh37tyZcruRkRF8/PgRa9asATA2M252djZqamqg0Wiwdu1a
2585
+Pr6oqGhAY8fP4ZCoYCJiQlOnDiBzMxMuLi4IDc3F7W1tRgaGtKuDwAPHz5EaWnpLzN4e3tDoVDo
2586
ryCETIMaBpm37OzsYGVlhU2bNiE4OBhmZmZc2ymVygn3T3j79i327t0Lc3NzmJubIzIyEowxvH79
2587
GpWVldpmoFKp4ODggO7ubuzevRumpqYwNTXFzp07tcdCYmJitHdBm8zMzAyjo6NQqVQwNzf/w09P
2588
yMzRT1Jk3pJKpaioqEBISAh3s/hp/MHunzdpmvw3xhhiYmJQXV2N6upqNDQ04Pz58/+3/Uzm/2SM
2589
zcmbg5G/AzUMMm8xxqBWqyESiWa0na2t7YQzmIKCgpCXlweVSoXv37+joKAACxYsQGhoKHJyctDV
2590
1QUA6O7uRmtrKzZu3Ijnz59DrVajv78fhYWFXE1ArVbDxMRkxs2NkNlCP0mReau1tRXr1q2b8XYm
2591
Jibw8PBAY2MjpFIpfHx8EBUVBZlMBnt7e/j5+QEAXF1dceXKFWzZsgWjo6MQiUS4ffs2/Pz8EBkZ
2592
CS8vLzg4OMDT0xPW1tbTvm91dTUCAgJmnJeQ2UL3wyBEB//99x86Oztx9uxZnbYfGBiApaUlBgcH
2593
ERwcjHv37sHb2/u32yQlJWH9+vXYs2ePTu9JyJ+ihkGIDoaGhrB582aUlJTodEzh0KFDqK+vh0ql
2594
Qmxs7LSNR61WIywsTOf3I2Q2UMMghBDChQ56E0II4UINgxBCCBdqGIQQQrhQwyCEEMKFGgYhhBAu
2595
1DAIIYRwoYZBCCGECzUMQgghXKhhEEII4fI/Y1ZAKuMVQeMAAAAASUVORK5CYII=
2596
"></img>
2597
</div>
2598
</div>
2599
</div>
2600
</div>
2601
</div>
2602
<div class="text_cell_render border-box-sizing rendered_html">
2603
<h3>
2604
  For dP(r) / dr
2605
</h3>
2606
</div>
2607
<div class="cell border-box-sizing code_cell vbox">
2608
<div class="input hbox">
2609
<div class="prompt input_prompt">In&nbsp;[17]:</div>
2610
<div class="input_area box-flex1">
2611
<div class="highlight"><pre><span class="c"># Check normalizations</span>
2612
<span class="n">r_step</span> <span class="o">=</span> <span class="mf">0.01</span> <span class="c"># deg</span>
2613

    
2614
<span class="k">for</span> <span class="n">r_max</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">100</span><span class="p">]:</span> <span class="c"># deg</span>
2615
    <span class="n">r</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">r_max</span><span class="p">,</span> <span class="n">r_step</span><span class="p">)</span>
2616
    <span class="n">pdf_gauss</span> <span class="o">=</span> <span class="n">gauss_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">)</span>
2617
    <span class="n">pdf_king_2</span> <span class="o">=</span> <span class="n">king_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">)</span>
2618
    <span class="n">pdf_king_3</span> <span class="o">=</span> <span class="n">king_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
2619
    <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">pdf_gauss</span><span class="p">,</span> <span class="n">pdf_king_2</span><span class="p">,</span> <span class="n">pdf_king_3</span><span class="p">]:</span>
2620
        <span class="n">norm</span> <span class="o">=</span> <span class="p">(</span><span class="n">r_step</span> <span class="o">*</span> <span class="n">_</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
2621
        <span class="k">print</span> <span class="n">norm</span>
2622
</pre></div>
2623

    
2624
</div>
2625
</div>
2626
<div class="vbox output_wrapper">
2627
<div class="output vbox">
2628
<div class="hbox output_area">
2629
<div class="prompt output_prompt"></div>
2630
<div class="output_subarea output_stream output_stdout">
2631
<pre>0.999787429515
2632
0.67113834294
2633
0.961792040763
2634
0.999791640617
2635
0.996466292832
2636
0.999861093167
2637
</pre>
2638
</div>
2639
</div>
2640
</div>
2641
</div>
2642
</div>
2643
<div class="cell border-box-sizing code_cell vbox">
2644
<div class="input hbox">
2645
<div class="prompt input_prompt">In&nbsp;[18]:</div>
2646
<div class="input_area box-flex1">
2647
<div class="highlight"><pre><span class="c"># Plot PDF dP(r) / dr</span>
2648
<span class="n">r_max</span><span class="p">,</span> <span class="n">r_step</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.01</span> <span class="c"># deg</span>
2649
<span class="n">r</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">r_max</span><span class="p">,</span> <span class="n">r_step</span><span class="p">)</span>
2650

    
2651
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">gauss_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;Gauss$(\sigma=0.2)$&#39;</span><span class="p">);</span>
2652
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">king_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.1, \gamma=1.5)$&#39;</span><span class="p">);</span>
2653
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">king_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.2, \gamma=3)$&#39;</span><span class="p">);</span>
2654
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;r (deg)&#39;</span><span class="p">)</span>
2655
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;dP / dr (deg^-1)&#39;</span><span class="p">)</span>
2656
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">);</span>
2657
</pre></div>
2658

    
2659
</div>
2660
</div>
2661
<div class="vbox output_wrapper">
2662
<div class="output vbox">
2663
<div class="hbox output_area">
2664
<div class="prompt output_prompt"></div>
2665
<div class="output_subarea output_display_data">
2666
<img src="
2667
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xdc1dX/wPHXBRFkCKiIhitFcwaogeKiHOVemaPUTL/i
2668
qByZleZPSnPlym2mIo7IzJXiKJVwpIhIznIrKCqkKCIi4/z+OHoT2XAXeJ6Ph4+8937u+bzBT/fc
2669
zxnvt0YIIVAURVEUwMzYASiKoiimQ3UKiqIoipbqFBRFURQt1SkoiqIoWqpTUBRFUbRUp6AoiqJo
2670
6a1TePToEV5eXri7u1O7dm2++OKLDMcEBwdjb2+Ph4cHHh4eTJ48WV/hKIqiKLlQTF8NW1lZsW/f
2671
PqytrUlJSaFp06YcOHCApk2bpjuuRYsWbN26VV9hKIqiKHmg1+Eja2trAB4/fkxqaiqlSpXKcIza
2672
O6coimI69HanAJCWlkb9+vW5ePEiQ4cOpXbt2ule12g0HDp0CDc3N1xcXJg5c2amxyiKoih5l68v
2673
3cIA4uLihJeXl9i3b1+65+/fvy8SEhKEEEIEBQWJ6tWrZ3ivgUIsFCZOnGjsEEyG+l38R/0u/qN+
2674
F//J72enQVYf2dvb0759e8LCwtI9b2dnpx1iatu2LcnJydy5c8cQISmKoiiZ0FunEBsbS1xcHACJ
2675
iYn89ttveHh4pDvm1q1b2tub0NBQhBCZzjsoiqIohqG3OYXo6Gj69+9PWloaaWlp9O3bl5YtW7J0
2676
6VIAfH192bBhA4sXL6ZYsWJYW1sTGBior3CKBB8fH2OHYDLU7+I/6nfxH/W7KDiNEKa9/Eej0agV
2677
SoqiKHmU389Ova4+UpQXXalSpbh7966xw1CKMEdHR53Oxao7BUXRI3X9KvqW1TWW32tP5T5SFEVR
2678
tFSnoCiKomipTkFRFEXRUp2CoiiKoqU6BUVRFEVLdQqKopiky5cvGzuEDKKjo3n48KGxw9Ar1Sko
2679
imJyLl26xOHDh40dRgZOTk7MmDHD2GHoleoUFEUhMDAQLy8vbG1tcXZ2plGjRixevNho8SxdupTe
2680
vXvrpe3NmzczZcoUpk2bxurVq7M8bt26dcyaNYuePXtqU/AUK1aM9u3bExAQoJfYTIIOMrTqVSEI
2681
UVGyVBiu35kzZwpnZ2fxyy+/iAcPHgghhDh+/Lh49913RVJSksHjiYiIEPPmzdNL23FxcaJ+/fra
2682
x40aNRIxMTEZjjt//rw2hpiYGOHg4CAuXbqkfb1v3756iS8/srrG8nvtqTsFRXmB3bt3j4kTJ7J4
2683
8WK6deuGjY0NAO7u7qxZs4bixYsDMG3aNFxdXSlZsiR16tRh8+bN2jbMzMy4dOmS9vH777/PhAkT
2684
tI+nT59OhQoVKFmyJDVr1mTv3r3ZPr9t2zbeeOMNvfy8ISEh6Qp5ubm5sW/fvgzHnT59WjtMVKZM
2685
GVxdXTl27Jj2dScnJy5cuKCXGI1N5T5SlBfYn3/+SVJSEp07d872OFdXVw4cOEC5cuVYv3497733
2686
HhcvXsTZ2TnDsRqNRlsx8Z9//mHhwoWEhYVRrlw5rl27RkpKSpbPAxw9epRx48bl6ee4dOkSy5Yt
2687
y/L1Ro0a0blzZ6KionBwcNA+7+DgwPnz5zMc365dO3bs2AHI6mXR0dG4urpqX3dzc+PYsWPpnisq
2688
VKegKEamq4qz+UmxFBsbS5kyZTAz+2/QwNvbm7Nnz5KUlMSuXbto1qwZb7/9tvb1d955h6lTpxIa
2689
GkrHjh2ziEUGY25uTlJSEqdPn6Z06dJUqlQJgAsXLmT6PMDDhw8zlOE9d+4cX375JTExMYSFheHj
2690
40P79u0ZMmQIAFWrVmXq1Kk5/rxxcXFYWVlpHxcvXpwHDx5kOM7CwoK6desCsH37dho2bIi7u7v2
2691
dUdHR86dO5fj+QojNXykKEYmhG7+5Efp0qWJjY0lLS1N+9yhQ4e4e/cupUuX1n64BwQE4OHhgaOj
2692
I46Ojpw6dYrY2Ngc23d1dWXu3Ln4+fnh7OxM7969td+6M3seIDU1NV0bd+7cYciQIQQEBLBv3z5a
2693
tmzJmjVrtB1CXtjZ2aVLEpeYmJhtYa+4uDj8/f1Zs2ZNuudLlCjB48eP83z+wkDdKSjKC6xx48ZY
2694
WlqyefNmunXrlukxV69eZfDgwezdu5fGjRuj0Wjw8PDQfrhaW1unW7sfHR1NxYoVtY979+5N7969
2695
iY+Px9fXl88++4yAgIAsny9WLP3H0sKFCxk+fLj2G35SUpK2jO9TuR0+qlatWrqywLGxsdSvXz/T
2696
9wghmDZtGj/88AO2trZcvXqVypUrA3IupqhWiVSdgqK8wBwcHJg4cSLDhg1DCEGbNm2wsbHhxIkT
2697
JCQkAJCQkIBGo6FMmTKkpaUREBDAqVOntG24u7uzdu1aJk+ezG+//UZISAienp6AHPaJioqiSZMm
2698
WFpaYmVlhRAiy+cBypUrx4MHD7C1tQUgPj5eOzl8+vRp6tSpg4WFRbqfI7fDR82bN2fs2LHax+Hh
2699
4UyfPh2AixcvUrVqVe3Q1fz58+nRowePHj0iNDSUxMREbacQHR1NrVq18v4LLwzytWbJgApBiIqS
2700
pcJy/a5du1Z4enoKa2tr4eTkJLy8vMSyZcvE48ePhRBCjB8/XpQqVUqUKVNGjB49Wvj4+Ijly5cL
2701
IYQICwsTderUEXZ2dqJv376iT58+YsKECUIIIU6cOCE8PT2FnZ2dKFWqlOjYsaOIjo7O8nkhhFi+
2702
fLnYs2ePNrZLly6JuXPnig0bNoi5c+eK5OTkAv2sAQEBYtKkSeKrr74Sa9as0T7v4eEhwsPDhRBC
2703
7N+/X5iZmQmNRiM0Go0wMzMTUVFR2mMHDhwoEhMTCxSHrmR1jeX32lNFdhRFj9T1m3dxcXHMnDmT
2704
yZMnGzuUTD169Ihx48Yxe/ZsY4cCqCI7iqIUcQ4ODpQpUyZXE9nGEBgYiK+vr7HD0BvVKSiKYnJG
2705
jBjBpk2bjB1GBpGRkTg6OvLKK68YOxS9UcNHiqJH6vpV9E0NHymKoih6o7dO4dGjR3h5eeHu7k7t
2706
2rX54osvMj3u448/pnr16ri5uXH8+HF9hVMk3L8PycnGjkJRlKJMb/sUrKys2LdvH9bW1qSkpNC0
2707
aVMOHDhA06ZNtccEBQVx4cIFzp8/z5EjRxg6dKhJ5lA3BiHgwAFYtQrOnoVz5+DhQ0hJgYoVwdUV
2708
vLxg0CD5WFEURRf0unnt6a7Dx48fk5qammEH4NatW+nfvz8AXl5exMXFcevWrQxJtvz8/LR/9/Hx
2709
wcfHR59hG1VKCvzyC8yaBXfvwrBh0K8fVK8O5crJO4UrV+D8edi1C9zcoEUL+Ogj0FNiSUVRCoHg
2710
4GCCg4ML3lC+djfkUmpqqnBzcxO2trbi008/zfB6hw4dxMGDB7WPW7ZsKcLCwtIdo+cQTUpkpBDe
2711
3kI0bizE5s1CpKTk/J74eCGWLBHC1VWIXr2EiI3Vf5xK7r1I169iHFldY/m99vQ60WxmZkZERARR
2712
UVGEhIRk2ouJ52bHn8+O+KLYvRteew06dJDDRp07g7l5zu+ztQVfX/jrLyhfHurVg2dS3SuKouSJ
2713
QVYf2dvb0759+3SJqABcXFyIjIzUPo6KisLFxcUQIZmUKVNgwAAIDIQvvgCzfPyrWFvD7Nnw008w
2714
Zgx88gk8k/hSURQlV/TWKcTGxhIXFwfI9LS//fYbHh4e6Y7p1KmTttbp4cOHcXBwyLRoR1H27bew
2715
Zg0cOybnBgqqWTM4ehSOHJFzEUU0u6+iKHqit4nm6Oho+vfvT1paGmlpafTt25eWLVuydOlSAHx9
2716
fWnXrh1BQUG4urpiY2PDypUr9RWOSVqxAhYulMNF5crprl1HRzkc1asXdOoEGzbIYSZFUZScqB3N
2717
RrJpEwwfDsHBUKOGfs6RkiLnG86dk51EiRL6OY+StaJ6/RbE5cuXefnll40dhsmLjo7G3t4+Q+2I
2718
56kdzUVAeLj8sN62TX8dAkCxYrBsGVSoAO+9B88VtFKUHNWtW5eQkBCdtXfp0iW1FymXnJycmDFj
2719
hsHPqzoFA0tIgD59YN48yKLgk06ZmYG/v9zzMHJk/ss2KkVXlSpV2LNnj/ZxYGAgpUqVYv/+/Zw6
2720
dYrmzZvr7FxLly6ld+/eOmvvWZs3b2bKlClMmzaN1atXZ3lcREQEY8aM0UsM+T1ntWrVsLS0xNnZ
2721
WTvPWqxYMdq3b699bCiq8pqBffIJeHrK8X5DsbSUw1XNmsmJ7WcKTykKGo1GuxR81apVfPLJJwQF
2722
BdGoUSOdnuevv/6iQoUKOm3zqXv37jFp0iSOHTsGyDKjbdu2pUyZMumOmz17NgcOHMDe3l4vcWQm
2723
N+f8/PPPefPNN3nppZfSlSN97bXXmD9/Pv369TNEqIC6UzCoLVvk2P6CBYY/t7097NgB8+fD9u2G
2724
P79i2oQQLF26lDFjxrB7925th/D8XUSVKlWYNWsWbm5uODg40KtXL5KSkgBZ2tLDw4OSJUvyzjvv
2725
0LNnTyZMmKB977Zt23hDT9vuQ0JCtCU7Adzc3Ni3b1+G40aPHk3nzp31EkNWcnPO4sWLU6lSpQz1
2726
qUEOI124cEFf4WWg7hQMJDpaziNs3AglSxonBhcXuReiWzcIDYUn5WYVhUWLFnHw4EH27t1LvXr1
2727
tM8/exfx9PHPP//Mrl27sLS0pEmTJvj7+zNgwAC6du3KmDFjGDZsGFu3bqVXr1589tln2vcePXqU
2728
cePG5SmuS5cusWzZsixfb9SoEZ07dyYqKgoHBwft8w4ODpw/fz7T9xR04j+3MeXlnEePHiUpKYn7
2729
9+9To0YNOnXqpH3Nzc2NY8eO4erqWqC4c0t1CgYyahQMHAje3saNo0kT+PRT6NkTQkKgeHHjxqOA
2730
5ivd7OIXE/P3YSeE4Pfff+eNN96gbt26OR7/8ccfU+7JGuqOHTsSERHB4cOHSU1N5aOPPgKga9eu
2731
eHp6pnvfw4cPM2QsOHfuHF9++SUxMTGEhYXh4+ND+/btGTJkCABVq1Zl6tSpOcYUFxeHlZWV9nHx
2732
4sV58OBBpsfmlDXh/v37DBo0iPDwcLp27cq3335LZGQkkZGReHt75zqmvJyzZcuWdO3aFQB3d3ea
2733
N2+u7eQcHR05d+5cns5XEKpTMID9++HQIbkvwRR88onsED77DObMMXY0Sn4/zHVFo9GwZMkSJk2a
2734
xKBBg1i+fHm2x5d7ZlONtbU1N27cIDo6OkM2gooVK6b7hpz63PK3O3fuMGTIEIKCgrCysqJLly6s
2735
WrUqX+P9dnZ2/Pvvv9rHiYmJWW6Ezelbe0BAAPPnz8fZ2ZnNmzdz6NAhbt68Sbdu3fIcV27P+eyd
2736
haOjI8HBwXTp0gWAEiVK8NiAu1BVp6BnqakwYgRMny5TUZgCjUam5K5fH3x8ZJ4l5cXm7OzMnj17
2737
aNGiBcOGDWPRokV5en/58uW5fv16uueuXbuWbsjj+fHyhQsXMnz4cO03/KSkpAxr8nM7VFOtWrV0
2738
aXRiY2Opn8Xyvpy+tQ8dOhTzJ4nHunTpwrRp09JlZs7P8FF251yzZg1bt25l/fr1ACQkJKT7Xd27
2739
dy9Dhml9Up2Cnvn7y87AkKuNcsPREVavhnfekUNKzy3SUF5A5cuX13YMo0ePZvbs2Tm+5+k34MaN
2740
G2Nubs6CBQsYMmQI27dv5+jRo+kmlsuVK8eDBw+wfbK9Pj4+Xjs5fPr0aerUqYOFhUW69nM7VNO8
2741
eXPGPrOsLjw8nOnTpwNw8eJFqlatqv1gzuxb+/nz56lWrRpmZmbaDuGpK1eupFuJlZ/ho8zO+TSu
2742
KlWqaIfLHj58SExMTLrfW3R0NLVq1crT+QpCrT7So/v34csvYe5c+e3c1DRtKjurJ8PAikLFihXZ
2743
u3cvGzZsYNy4cTl+q346EW1hYcHGjRtZvnw5jo6OrF27lg4dOlD8mUmrFi1aEBoaqn08dOhQdu/e
2744
zS+//MLvv//OtGnT8h23jY0NY8eOZfLkyXz99deMHTuWsmXLAtCjRw8iIiIAWLBgAStWrCA4OJiv
2745
vvqK+/fvAzIP2+7duzNt+7XXXst3XNmd82lcTZs2JTo6mrlz5zJ+/HgCAwPT3TFFRETQpEmTAsWQ
2746
J/lKuG1AhSDELH36qRDvv2/sKLKXkCBE9epC/PKLsSMpmgrz9VtQnp6ewt/fX/v47t27Yvz48UaM
2747
KGtJSUkiJCQkw/NHjx4V27dvN0JEUmJiohg1alS2x2R1jeX32lN3Cnpy8yb88AN8842xI8metTWs
2748
XCnzMMXEGDsapTALCQnh5s2bpKSksGrVKk6dOsVbb72lfd3BwYEyZcoQGxtrxCgzt2nTJrwzWRp4
2749
5swZWugifXE+BQYG4uvra9Bzqk5BT2bPhnffhZdeMnYkOWvSRMb68cfGjkQpzP755x/c3d1xdHRk
2750
zpw5bNiwIcMKoBEjRrBp0yYjRZi1nj17ZphLAOjXrx82NjZGiAgiIyNxdHTklVdeMeh5VZZUPfj3
2751
X1lTOSICKlUydjS58/Ah1KkjE+i1amXsaIqOwnj9KoWLypJaCHz3HXTvXng6BJDDSPPmyWGkJ1kL
2752
FEV5Aak7BR27dw+qVZOVz6pVM3Y0edepEzRqBHnMRqBkobBdv0rho+s7BdUp6NiUKfD332DgbLc6
2753
c/kyvPYahIVBlSrGjqbwK2zXr1L4qE7BhCUkQNWqspqaAfea6Nw338iEeVu2GDuSwq8wXb9K4aTm
2754
FEzY2rXQuHHh7hAAxoyBs2dh1y5jR6IoiqGpTkFHhJB1Ej780NiRFJylpSzG88knss6zoigvDtUp
2755
6MiBA/D4MbRsaexIdKNTJ3ByMp3MroqiGIaaU9CRXr3kJrCilEcoPBzat4d//jFeYaDCrrBcv0rh
2756
VWjmFCIjI3n99depU6cOdevWZd68eRmOCQ4Oxt7eHg8PDzw8PJg8ebK+wtGr6GhZZtOAZVQNon59
2757
eOstKECeMkVRChm9pc62sLBgzpw5uLu78+DBAxo0aEDr1q0zpIBt0aIFW7du1VcYBvH997KSmQFr
2758
gRvM5Mnw6qsweLBaoqroxuXLl3n55ZeNHYZRRUdHY29vn6F+hCnQ251CuXLlcHd3B8DW1pZatWpx
2759
48aNDMcV9lvr5GRYulTuBC6KXFzk5Pn//Z+xI1GMoW7duoSEhOisvUuXLnH48GGdtVdYOTk5MWPG
2760
DGOHkSmDFNm5cuUKx48fx8vLK93zGo2GQ4cO4ebmhouLCzNnztQW3XiWn5+f9u8+Pj7pqiAZ26ZN
2761
UKMG5KK0baH1yScyl9PJk/BMTXeliKhSpQrLly+n5ZNVEoGBgQwbNowtW7Zw6tQpnZ5r6dKl2uI3
2762
urZ582bOnDmDmZkZLi4u9O3bN8Mx69atIzo6mtDQULp27UovA1S/2rJlCw8ePODixYuUKVOGYcOG
2763
UaxYMdq3b09AQAD9dDTuHBwcTHBwcMEbylfC7TyIj48XDRo0EJs2bcrw2v3790VCQoIQQoigoCBR
2764
vXr1DMcYIMQCadNGiHXrjB2F/s2ZI0THjsaOovAx9etXCCGqVKki9uzZI4QQwt/fX5QuXVr8+eef
2765
Oj9PRESEmDdvns7bFUKIuLg4Ub9+fe3jRo0aiZiYmHTHnD9/Xnv+mJgY4eDgIC5duqSXeJ66e/eu
2766
sLS0FImJiSItLU2UKlVKXLlyRft63759C3yOrK6x/F57el2SmpycTPfu3Xnvvfe0RaifZWdnpx1T
2767
a9u2LcnJydy5c0efIenU9etw9Chk8qMVOUOGwF9/waFDxo5E0QchBEuXLmXMmDHs3r1bW36ySpUq
2768
7NmzR3tclSpVmDVrFm5ubjg4ONCrVy+SnmRQDA8Px8PDg5IlS/LOO+/Qs2dPJkyYoH3vtm3b0pWZ
2769
1KWQkJB0owxubm7s27cv3TGnT5/WDtmUKVMGV1dXjh07ppd4nnJwcODYsWNYWVmh0WhISUlJN2Tu
2770
5OTEhQsX9BpDXult+EgIwcCBA6lduzYjR47M9Jhbt25RtmxZNBoNoaGhCCEMWqC6oNauldlQS5Qw
2771
diT6Z2UFfn7w+efwxx+mWV5Uyb9FixZx8OBB9u7dS71nxgifltt89vHPP//Mrl27sLS0pEmTJvj7
2772
+zNgwAC6du3KmDFjGDZsGFu3bqVXr1589tln2vcePXqUcXnMtHjp0iWWLVuW5euNGjWic+fOREVF
2773
4eDgoH3ewcGB8+fPpzu2Xbt27NixA5CfT9HR0bi6uuYpnrzE9FSdOnUAOHDgAD4+PlR5ZsWGm5sb
2774
x44dy1cc+qK3TuHgwYOsWbOGV199FQ8PDwCmTJnCtWvXAPD19WXDhg0sXryYYsWKYW1tTWBgoL7C
2775
0TkhYNUqWLLE2JEYTt++cqfzzp3Qtq2xoylCdNXD5nPRhhCC33//nTfeeIO6uZgc+/jjjylXrhwA
2776
HTt2JCIigsOHD5OamspHTzbqdO3aFU9Pz3Tve/jwYYaaz+fOnePLL78kJiaGsLAwfHx8aN++vbaQ
2777
fdWqVZk6dWqOMcXFxWFlZaV9XLx4cR48eJDuGAsLC+3Pt337dho2bKhdDPOs+/fvM2jQIMLDw+na
2778
tSvffvstkZGRREZG4u3tneuYnrVx40Z+/vlnZs2ale55R0dHzp07l6e29E1vnULTpk1JS0vL9pjh
2779
w4czvJAu2zl2DB49gqZNjR2J4RQrJpeojhsn9y+ouwUdMfIKPI1Gw5IlS5g0aRKDBg1i+fLl2R7/
2780
tEMAsLa25saNG0RHR+Pi4pLuuIoVK6YbKklNTU33+p07dxgyZAhBQUFYWVnRpUsXVq1ahX0+1nbb
2781
2dnx77//ah8nJiZmqPr2VFxcHP7+/qxZsybT1wMCApg/fz7Ozs5s3ryZQ4cOcfPmTbp165bnuJ7q
2782
1q0bbdq0wcPDg99++017t1CiRAkeP36c73b1wSCrj4qiVavkZrUX7YOxa1fZMWzeLP+uFA3Ozs7s
2783
2bOHFi1aMGzYMBYtWpSn95cvX57r16+ne+7atWvphkWKFUv/cbNw4UKGDx+u/YaflJSUYd1+bodq
2784
qlWrRlhYmPb52NhY6tevn+F4IQTTpk3jhx9+wNbWlqtXr1K5cuV0xwwdOlRbmrNLly5MmzYt3YrH
2785
vAwfbd++nSlTpnDw4EFsbW0pW7YsGzZsYMyYMQDcu3fP5IbMVaeQD48fQ2CgLKTzotFo4Ouv5d1C
2786
585gprJnFRnly5fXdgyjR49m9uzZOb7n6Z1A48aNMTc3Z8GCBQwZMoTt27dz9OjRdBPL5cqV48GD
2787
B9ja2gIQHx+vnRw+ffo0derUwcLCIl37uR2qad68OWPHjtU+Dg8P1y59vXjxIlWrVkWj0TB//nx6
2788
9OjBo0ePCA0NJTExkcqVK3P+/HmqVauGmZlZhlrNV65c0U685yUmAHNzc22HIoQgMjKSV199Vft6
2789
dHR0hg29xqY6hXwICpLpsatWNXYkxtG+vewYfvkFevQwdjSKLlWsWJG9e/fSvHlz7YqZ7DydiLaw
2790
sGDjxo0MGjSIL774grZt29KhQweKFy+uPbZFixaEhoZqO4qhQ4eydetWzpw5Q1RUFNMKkE/FxsaG
2791
sWPHMnnyZNLS0hg7dixly5YFoEePHixfvpyEhARGjRql7cg0Go12jrNTp07MmTOHt956K0Pbr732
2792
Wr7jeuutt7h06RLz58/n6tWrjB8/njZt2mhfj4iIYNCgQfluXy/ytZDVgEwxxC5dhPjhB2NHYVxB
2793
QULUri1ESoqxIzFtpnj9Goqnp6fw9/fXPr57964YP368ESPKWlJSkggJCcnw/NGjR8X27dv1cs7E
2794
xEQxatSoAreT1TWW32sv25v/27dvs3DhQnr27ImXlxeNGjWiZ8+eLFy4kNu3bxuizzI59+7Bnj3w
2795
9tvGjsS43npLZk5dv97YkSimIiQkhJs3b5KSksKqVas4depUum/eDg4OlClThtjYWCNGmblNmzbh
2796
7e2d4fkzZ87QokULvZwzMDAQX19fvbRdEFmmzh44cCAXL16kbdu2eHp6Ur58ee3a3tDQUHbu3Imr
2797
qys//PCDfgM0sdTDq1fDzz9DIc/hpxO//SZThZ8+Dc8NwypPmNr1q0/Lli1jwoQJJCQkUK1aNaZO
2798
nUrb59YuCyH44Ycf+N///mekKE1DZGQk4eHh6fYz5JfBajSfOHEi3YRIfo8pKFP7n6pTJzmOnkla
2799
lReOENCsGQwbBn36GDsa02Rq169S9BisUzAVpvQ/1b17ULEiREYWzTTZ+bF7N4wcCadOqZVImTGl
2800
61cpmkyiyM7zt4Qvil9/BR8f1SE8q3VrsLOTK5EURSn8slySGh4enunzQgiOHz+ut4BM2fr1agnm
2801
8zQaWWvhiy9kHih1t6AohVuWw0fm5uY0b9480zcdPnyYxMREvQb2lKncfquho6wJAQ0bwoQJL0bG
2802
2LwwletXKbp0PXyU5Z1CzZo1Wbp0KTVq1MjwWsWKFfN8osLu11+hRQvVIWRGo5Edwtdfy13OL1rq
2803
D0UpSrLsFPz8/LJMaDdv3jy9BWSqfv4549BRSloKB68d5FbCLcralMXZxpmK9hWxLW5rnCCNqFMn
2804
mDgRtm+HDh2MHY3pcHR0zHFXsKIUhKOjo07bU6uPcuH+fTl0dPUqODhA0Pkgfjz1I0Hng6jiUIUq
2805
DlW4nXCbWw9ucSvhFh1rdGTYa8NoXKHxC/WBsH49zJkjC/G8QD+2opgkgyxJ7dChA9u2bcvzSQrC
2806
FDqFn36SWVE3bn3EiJ0jCL4SzEivkXR8pSMVSlZId+ydxDv4R/izOGwxNhY2zH5zNm+8rJ9qU6Ym
2807
NRXq1IFFi0BPBbYURcklg3QKHh4eBl95ZAqdwrvvQm3vy2y0eJuqjlVZ0WkFdpZ22b4nTaTx6z+/
2808
8uGOD+n8Smemt5qOTXEbA0VsPP7+sGYN/P67sSNRlBebQfYpPK2g9iJJToZfj/7F3AeN6PtqX9a/
2809
vT7HDgHATGNG55qdOTHkBPGP43Fb4safkX8aIGLjevddOH/+xUwrrihFgZpTyMG23+/x9q6GrOj3
2810
FX3q5T+Xw+a/NzP418EsbLeQHnWK9maHhQth1y6VH0pRjElvdwq//fZbvgIqCoQQjAr+gFdtWxeo
2811
QwDoUrNrAEi4AAAgAElEQVQLu/vuZtSuUcw6NMvoQ2L69MEHcPQonDhh7EgURcmrbO8UAgICWLdu
2812
HTt37jRkTOkY805hzp9z+eLHNYT0P4hnA0udtHnt3jXarW1Hy6otmfPmHMw0+dgCLARcuCD/3Lsn
2813
/zx8KJdGOTnJPzVqgI6XquXFt9/KOtaBgUYLQVFeaDqfaJ48eTK///47QUFBGeqmGpKxOoXDUYdp
2814
v6YTlgFHuH76ZZ0usYx7FEe7te2oX74+89vOz92y1UuXYN06CAmRX8Pt7KBmTdkR2NuDtTXExUFs
2815
LNy+DX//DeXLw2uvyVSmnTvLxwYSHy8r0/35JzxTpldRFAPReadgaWnJ2bNnqWrkmpPG6BSEEDRc
2816
1pBXYj/F8XovFi7U/TnuPbpHq9WtaF65OTNbz8y8Y3j0SC7lWbUK/vkHevaEN9+UH/TOztmfIDUV
2817
zp6F0FBZFSgoCOrWldWB+vYFAxQL/7//g5s34fvv9X4qRVGek+/PzqxKsq1du1a4u7uL27dv572e
2818
mw5lE6LebDi9QdRfWl809k4TO3fq7zz/PvxXuC9xF1/8/oVIS0v774WUFCFWrhSiUiUh2rUTYssW
2819
IZKSCnayR4+E2LZNiHffFcLBQQhfXyFOnSpYmzmIiRHC0VGIqCi9nkZRlEzk97Mz23ft2bNHeHt7
2820
56vha9euCR8fH1G7dm1Rp04d8d1332V63EcffSRcXV3Fq6++KsLDwzMGaOBOISU1RdRaUEusOxok
2821
7O3lZ6k+xSTEiDoL64jpB6bLJ/btE6JOHSGaNBFi/379nDQ6Wgg/PyHKlROiY0ch/vpLP+cRQowY
2822
IcTo0XprXlGULOilUxBCiBMnTuSr4ejoaHH8+HEhhBDx8fGiRo0a4syZM+mO2b59u2jbtq0QQojD
2823
hw8LLy+vjAEauFNYFbFKNFneRKxYkSbeftsw54y8FymqzqggTn/QSYiXXhJi0yYhnr1z0JfERCHm
2824
zBHC2VmIPn2EuHBB56e4dk3eLcTG6rxpRVGykd/PzhyXvtSrVy/vY1JAuXLlcHd3B8DW1pZatWpx
2825
48aNdMds3bqV/v37A+Dl5UVcXBy3bt3K1/l04XHqY/yC/fjmjW8ICtLQvr1hzlshOoFTa+y4dngn
2826
h7YukvmnDZE8yMpKlk07fx5eeQW8vGRWu0ePdHaKihXlj7Nggc6aVBRFj7LMkvrUrFmz0k1YaDQa
2827
7O3tadCggfZDPydXrlzh+PHjeHl5pXv++vXr6dJwV6hQgaioKJyfm0T18/PT/t3HxwcfH59cnTev
2828
VhxfQfXS1WlSoQVdfgeDJIPduxd69aLEV19h0aY6XTe9y75K1antVNsAJ3/Czk7OCg8YAKNGyQnp
2829
BQvgrbd00vxnn0HTpvDJJ2D74iWQVRSDCA4OJjg4uOAN5XQr0bt3b1G9enUxevRoMWrUKFGjRg3R
2830
vXt30bBhQzFt2rQcb0Xi4+NFgwYNxKZNmzK81qFDB3HgwAHt45YtW4pjx46lOyYXIepEcmqyqDC7
2831
gjgSdUQcOCCEu7sBTvrjj0I4Ocl5hCdWRawSL899WcQkxBgggCwEBQnx8stCvP++EHFxOmmye3c5
2832
UqUoimHk97Mzx+GjyMhIwsPDmTVrFrNnz+bYsWPcvn2bP/74A39//2zfm5ycTPfu3XnvvffokklJ
2833
LhcXFyIjI7WPo6KicHFxyWu/phO7LuzCxc4FTxdPdu7U2ZfkrM2ZA59+KpeLPnPn08+tH+/UeYe3
2834
17/N49THeg4iC23byu3Ilpbw6qvybqaAPv8cZs2Cx0b6kRRFyZ0cO4WYmBiKFy+ufWxhYcGtW7ew
2835
trbGysoqy/cJIRg4cCC1a9dm5MiRmR7TqVMnAgICAFni08HBIcPQkaEsP76cgR4DAZm358039Xiy
2836
WbNg6VI4eBAymbP55o1vsLO04+MdHxsvHYatLSxZIuPs10+O/RTgE71hQ7nXbu1aHcaoKIrO5ZgQ
2837
b9KkSWzcuJEuXboghODXX3+lU6dOjBkzhsGDB7M2i//LDxw4QPPmzXn11Ve1G7OmTJnCtWvXAPD1
2838
9QXgww8/ZOfOndjY2LBy5Urq16+fPkADbF679eAWNRfW5OrIqyTdL4mrK8TEwDN9oe6sXAlffQUH
2839
DkCFClkedj/pPt7LvRnacCjDPYfrIZA8+PdfeP99+Uv56SeoXDlfzezdC8OGwenTYG6u2xAVRUlP
2840
r/UUjh49yqFDhwBo0qQJDRs2zHuE+WSITmHmoZmcjjnNys4rWbdOVhDbvFkPJ9q8GYYOheBgudon
2841
B5fuXsJ7uTc/vf0TLaq00ENAeSAEzJ4NM2bAsmWy/mY+mvDykkNJ3brpIUZFUbT0Wk/h0aNH2NnZ
2842
MWLECCpXrszly5fzfCJTJYRIN3Skt/mEkBAYPBi2bctVhwBQ1bEqq7uupvcvvYm8F5nzG/RJo5FD
2843
SFu2wIcfyqWrWdTwzq6JL76AqVNlB6EoiunJsVPw8/NjxowZTJs2DYDHjx/z3nvv6T0wQzkUeQgh
2844
BE0qNiEtTU/zCZGRMm/R2rXQoEGe3tq6WmtGNhpJ9/XdeZSiu/0D+daokUzIt3ev3IBw716e3t65
2845
Mzx4IOfXFUUxPTl2Cps2bWLLli3Y2MhSki4uLsTHx+s9MENZfnw5H3h8gEajISJCZpt++WUdniAp
2846
SSahGzECWrfOVxOfen9KFYcqDA8abhp1GJyd5ad6xYpyPOj8+Vy/1cxM7lt48h1DURQTk2OnYGlp
2847
iZnZf4clJCToNSBDik+KZ+PZjfRz6wfoaehoxAhwcZGfhPmk0WhY0XkFR6KO8P0xE0k5Wry4LLE2
2848
erTcmfbHH7l+a58+cO6cvOFQFMW05Ngp9OjRA19fX+Li4vj+++9p2bIlgwYNMkRsevfruV9pWqkp
2849
5WzLAXoYOvL3h3375H8LmLbCtrgtG3tuZMK+CYReD9VJeDoxeLAcFuvRQ/6cuVC8OIwZI+cWFEUx
2850
LblafbR79252794NwJtvvknrfA6D5Ic+Vx/12tCLVlVbMaj+IB48gHLlZH0andQUOn8eGjeW36Dr
2851
1NFBg9KWv7fw0Y6PODb4GE42Tjprt8DOnoUOHaB3b5g0KcdO8OFDOUwXHAy1ahkmREV5keh1Saox
2852
6atTeJz6GOeZzpwdfpZytuUICpIlJPft00Hjqamy2lnPnnL4SMfG7RnHketH2PXeLoqZ5Zi+ynBi
2853
YqBjR7m6atmyHDd6TJokC8qtXGmg+BTlBaLzJam2trbY2dll+qdkyZIFCtYUhFwN4ZXSr2iHjvbs
2854
gZYtddT4rFkyRcRHH+mowfQmvT4JM40ZX+79Ui/t55uTk1yVdPeuvGu4fz/bwz/8ELZuhSf7GRVF
2855
MQFZdgoPHjwgPj6eESNGMH36dK5fv87169eZMWMGI/Tw7dfQtv6zlU6v/LcBS2edwsmT8pZj5Uq5
2856
1EYPzM3MWddtHT+e+pHNf+tjl10BWFvDxo2yQHOLFrIeZxYcHeGDD2QfqiiKicgpY169evVy9Zy+
2857
5CLEPEtLSxOV51QWp27JcpS3bwthby9EcnIBG378WAgPDyGWLSt4kLlwJOqIcJrhJM7FnjPI+fIk
2858
LU1Wd6tWTYiLF7M87MYNWYTHyFVfFaXIye9nZ45fZW1sbFizZg2pqamkpqaydu1abAt5UvyTt09i
2859
bmaurVmwb5+cAihW0OH5776TQygDBxY8yFzwdPHk69e/ptv6biQ8NrGlwhqN3PU8erT85f71V6aH
2860
lS8vp16++87A8SmKkqkcO4V169axfv16nJ2dcXZ2Zv369axbt84QsenN06Gjp4n6fv9dB0NHUVFy
2861
R9aCBYapmvaEbwNfGpRvwOBtg01jY9vzhg2TacJbt5ZJADPx6acyIWseN0criqIHL+TqI89lnkxv
2862
NZ3XX34dgGrVZK66fFYelXr1AldXmDxZN0HmQWJyIt4rvPnA/QM+8tLP5HaB7d4N774Lq1dnukPw
2863
vfdkwbfPPzdCbIpSBOl89ZGfn1+29ZKjo6OZOHFink9obDfib3DhzgWaVmoKwJUrMhdP3boFaHTP
2864
Hjh8GMaN00mMeVXCogS/vPMLk/dP5sC1zL+NG12bNjKZXv/+sGFDhpc//xzmzpX7FxRFMZ4sR9Eb
2865
NmxIr169ePz4MfXr16d8+fIIIbh58ybh4eFYWloyZswYQ8aqE7/+8yttq7fFwtwCkJ/nb7xRgBGf
2866
x4/l0tO5c3W06y1/qjpWxb+zPz039CTsf2GUtytvtFiy5O0tt423awfx8bIm9BN168pceytWyKWq
2867
iqIYR47DR5GRkRw8eFBbHKdy5co0adKECtkUiNFpgDoePur6U1fervU27776LiDz8LzxBuQ7c8es
2868
WXJSIijIoHMJWZn0xyR2XdzF3v57KW6ujypBOnDunJxjGDMm3V6OI0fgnXfkZnC9FDhSlBeI2tGc
2869
C2kiDadvnTg59CQv2b2EEHL1y+HDUKVKPhq8exdq1JC1EkwkV0OaSKNLYBcq2VdiQbsFxg4na1eu
2870
QKtWsjd+ZiKhVSvZUX/wgfFCU5SiQK9FdoqKk7dOUsa6DC/ZvQTIspA2NvnsEACmT5c1BUykQwAw
2871
05ixuutqfrv0GyuPm3D+iCpVZGcaEABffqmtuvPllzJRXmqqccNTlBfVC9UpBF8JxqeKz3+Pg+H1
2872
1/PZWFSUzO/j56eDyHTL3sqeTT03Mfb3sRy9bsL5qV96SSYM3L5dVnUTghYtZLmG9euNHZyivJiy
2873
7RRSU1OZM2eOoWLRu31X9uFT2Uf7ODhYZmLIFz8/mTbaxUUHkelebafafN/he7qv786tB1mvIjO6
2874
p/mSDh6E4cPRiDQmTIBvvslztU9FUXQg207B3Ny80G9UeypNpBFyNUR7pyCEHL3IV6dw5ozM5FaA
2875
wjmG0LVWV/q796fHzz14nPrY2OFkzdERfvsNTp2CgQNp0zKVEiXkClZFUQwrx+Gjpk2b8uGHH7J/
2876
/37Cw8O1fwqbE7dOUNamrHap5tmzYGsLlSrlo7Fx42SH4OCg2yD14Cufr3As4chHOz4yzR3PT5Us
2877
CTt2QFQUmn59mfB5MpMna6caFEUxkBxXH/n4+GjTQTxrn04KD+RMV6uP5h6ey9+xf7OkwxIAFi2C
2878
sDC5Lj5PwsNlzYCLF8HKqsBxGcL9pPt4L/dm2GvDGPbaMGOHk71Hj6B7d4SlJQ3OBTJ5RnHatTN2
2879
UIpS+JjcktQPPviA7du3U7ZsWU6ePJnh9eDgYDp37kzVqlUB6N69O19+mbE+gK46hS6BXehVtxe9
2880
6vYCZBK2du3kBts86dYNmjeHkSMLHJMhXbxzEe8V3vzY/UfeePkNY4eTvaQk6NWLG1eT6W2xgeDD
2881
VqawBURRChWddwqzniS5z+wuAWD06NHZNrx//35sbW3p169flp3C7Nmz2bp1a/YB6qBTSE1Lxelb
2882
J84MP0M523IIIUtvHjmSx+WoJ0/KTVeXLhl193J+7bm0h3c3vsvBDw5SrVQ1Y4eTveRk0t7ry+Ht
2883
//Jw3RZadSp8v29FMSad71OIj4/nwYMHhIWFsXjxYq5fv05UVBRLlizJ1ZxCs2bNcHR0zPYYQ41x
2884
n7h1AmdbZ22VtX/+gRIl8rE/YfJkuXSyEHYIAC2rtmRii4l0+LEDcY/ijB1O9iwsMFu3lnL1X6J0
2885
37aI+/HGjkhRXghZ5j7ye7L+vlmzZoSHh2NnZwfAV199RTsdDPJqNBoOHTqEm5sbLi4uzJw5k9q1
2886
a2cbC8g5Dh8fnzyd6/n9CX/8kY9VR2fPysILy5fn8Y2mZehrQ/n737955+d32N5nuzYHlEkyN6fy
2887
npVscBpC1UZtsD+0o1BM7iuKMQQHBxMcHFzwhnKqwlOjRg2RmJiofZyYmChq1KiRqwo+ly9fFnXr
2888
1s30tfv374uEhAQhhBBBQUGievXqmR6XixBz1OnHTiLwZKD2ca9eQqxYkcdG3ntPiMmTCxyLKUhO
2889
TRZvrXlLDNk2RKSlpRk7nBwFrEoTP7/0kUhr0ECI2Fhjh6MohUJ+PztzXJLar18/PD098fPzY+LE
2890
iXh5edE/z7OzGdnZ2WH9ZBimbdu2JCcnc+fOnQK3+7w0kcb+q/tpUUXeGgiRjzuFixflcskikr6z
2891
mFkxArsHsv/qfuYenmvscHLUu4+GL0p8R2T1N+QW9Nu3jR2SohRZOXYK48ePZ+XKlTg4OFCqVCn8
2892
/f0Zp4O6Abdu3dLOKYSGhiKEoFSpUgVu93nn/j2Hg5WDdj7h/HkwN4eXX85DI3PmyN3L9vY6j89Y
2893
7K3s2d5nOzP/nMnGsxuNHU62ihWDLydo6B89Xa7+atECrl83dliKUiTlqipxgwYNaNCgQZ4a7t27
2894
N3/88QexsbFUrFiRr776iuTkZAB8fX3ZsGEDixcvplixYlhbWxMYGJj36HPhSNQRPF08tY//+AN8
2895
fPKQ5frOHVi3TmbPK2IqO1Rma6+tvLX2LcrblqdxxcbGDilL774Lkydr2NfCj9dLlJAdw549ULmy
2896
sUNTlCKlyKfOHrZ9GNVLVWdU41GALPvYogX873+5bGDKFHl7sdKEM44WUND5IAZuHcj+AftxLeVq
2897
7HCytHo1fP+9TE+imT8PZs+W6TGqVzd2aIpiclTq7CwcuX4Erwpe2scHDsi9Z7mSlAQLFkAOezIK
2898
u3bV2+HXwo+2a9tyO8F0x+v79IGYGFnTiI8/lnm2fXxkziRFUXQiy07hzTffZM6cOfz999+GjEen
2899
EpMTORtzFo9yHgBERkJCgqyLkys//gj16sk/RZxvQ1/61OtDu7XtiE8yzT0B5uYyOe3//d+TnEiD
2900
BsG338rKPMeOGTs8RSkSsuwU/P39cXBwwM/PDw8PD4YMGcKWLVtISEgwZHwFEh4dTm2n2pSwKAHI
2901
u4SmTXM5nyCEHJ745BP9BmlC/Fr40eClBnT9qStJKUnGDidTPXrI8s47djx5ok8fWLIE2raV/8CK
2902
ohRIlp1C+fLlGTBgAIGBgYSFhdGvXz/CwsJo06YNLVu2ZMaMGYaMM18yGzpq1iyXb/7tN/nf1q11
2903
H5iJ0mg0LGq3iJKWJem/uT9pwvQKGmS4WwBZ/W7tWujaFXbtMmZ4ilLo5WpOwdzcHG9vbyZNmsTB
2904
gwcJDAzExUSLyzwr9HooXi7/dQr798s7hVz57jsYNSoPy5SKBnMzc9Z1X8fNBzcZHjTcJNNtd+sG
2905
KSnP1Vto3Ro2b4a+fWGjaS+xVRRTVqRXH7383cvsfHcnr5R5hbt3Ze2EO3fAIqfMDpcugZcXXLsm
2906
kyS9gO4n3adVQCt8qvgwvdX0LBMjGsu2bbKkxYkT8u5B6/hxmf52yhQYMMBo8SmKsanVR8+5nXCb
2907
uEdxVC8tlyv++Sd4euaiQwBYvBjef/+F7RAASlqWZMe7O9hxYQdT9k8xdjgZtG8v0yBlKAzo4SFz
2908
VPn5yTkhRVHyJFeb1wqjp5vWzDSy39u/P5fzCYmJ4O8v82q/4Epbl2b3e7tp7t8cm+I2jGxkOjUk
2909
NBqYOlX23T17QvHiz7xYs6b8B2/dWt4aTpr0wg0DKkp+ZXmncPjwYdzc3LCxsaFx48acOXPGkHEV
2910
2JHr6XcyP115lKPAQHlL8aT4z4uuvF159vTbw7wj81gQusDY4aTTvDm88gosW5bJi5UqyY5hxw4Y
2911
NgxSUw0en6IUSlllyqtfv77YvXu3SExMFOvXrxdt2rTJV8a9gsomxGy1Cmglfv3nVyGEEImJQtjY
2912
CBEfn8Ob0tKEaNBAiO3b83XOouzy3cui8pzKYlHoImOHks6xY0KULy/EgwdZHHDvnhCvvy7E228L
2913
8eiRQWNTFGPK72dnlncKaWlptG7dGisrK3r06MHtQpSZMk2kcfT6Ue3Ko7AwqFULbG1zeGNoqBxu
2914
eOst/QdZyFRxqMLe/nuZemAq3x/73tjhaNWvL+8Av/suiwNKloSgILl+tV07uclBUZQsZTmncO/e
2915
PTZu3KidvX72sUajoVu3bgYLMq/+if2HUiVK4WTjBORh6GjhQhg6FMyK7Px7gVR1rMre/ntpGdCS
2916
5NRkhnsON3ZIgCyI5+0tE9mWKZPJAVZW8NNPMHy4THwVFCTrsSqKkkGWS1Lff//9dMsQn3YGT600
2917
UIK4/CyrWv3Xarad38ZPb/8EyJUqAwfK9e1ZunNHziNcvAilSxcg4qLv8t3LtAxoyYeeHzK6sWnk
2918
hRo+XK4sm5tdeQgh5KTzqlWwc6dKpKcUafldklok9yl8svsTnKyd+Lzp56Slyc/4v/8GZ+ds3jRv
2919
Hhw+nMkaRyUzkfcieSPgDQa4D2Bcs4LX1yio27ehdm25aKxatRwO/uEHmDBB7n7z9MzhYEUpnPLb
2920
KWQ5fDRr1qxsNyyNNuHMocejj/NZk88AWVq5TJkcOgQh5BKWefMME2ARUNG+IiHvh9AyoCX3k+4z
2921
teVUo25wK1sWRo6E8ePlArJsDRokh4/at4cVK6BjR4PEqCiFQZaD5/Hx8cTHxxMWFsbixYu5fv06
2922
UVFRLFmyhPDwcEPGmCdCCCJuRuBezh2AQ4fkeHO2QkPl/oQ81ehUytuVJ2RACHsv78V3my+pacZd
2923
9jlqlFyFGhqai4M7dIDt28HXFxYt0ntsilJY5Dh81KxZM4KCgrCzswNkZ9GuXTv2799vmADzeAt0
2924
Ne4qjZc35sYnNwCZ6aBRI/n/fpb+9z85n/DFFwWM9sUUnxRPl5+6ULpEaVZ3XY1lMUujxfLDD7IY
2925
T3BwLverXbokVyV17AjTp6tFBkqRobc0F7dv38bimdwQFhYWJr08NeJmBB7lPbSPc7xTiI+HDRvk
2926
1lglX+ws7djeZzspaSm0W9eOe4/uGS2W99+XawY2b87lG6pWlRfJkSPwzjvw8KE+w1MUk5djp9Cv
2927
Xz88PT3x8/Nj4sSJeHl50b9/f0PEli/Hbx7XDh3FxsKtW3ICMkvr18tho/LlDRNgEWVVzIqfe/xM
2928
rTK1aLayGVH3o4wSR7FiMuXRmDGycF6ulColU6WXKAGvvw43b+o1RkUxZTl2CuPHj2flypU4ODhQ
2929
qlQp/P39GTfO+KtNsnL85nFtpbU//5TJTtNl0XzesmVy4lEpMHMzc+a3nU/fV/vivdybk7dOGiWO
2930
1q2hTp08rhuwtISAADn53KgRnDRO7IpibEVuSWrluZXZ028PrqVc+eILuW9p4sQsDj51Ct58E65e
2931
lV8xFZ358eSPjNg5goCuAbzlavgd4ufOyWHD06dzWHmWmXXr5FKmFSvkhLSiFEIqdTbw78N/uZt4
2932
l6qOMpndoUPQpEk2b1i1Cvr3Vx2CHvSu15tNPTcxYMsAoyTSq1FD/tP+3//l4819+sDWrXJ1wrff
2933
PlPiTVGKviJ1p7D38l4mBk9k/4D9JCfLoeLr12X6mwxSUmQmzb17ZaplRS8u371Mhx874FPFh7lv
2934
zsXCPDcFLXQjLk5mUd29G9zc8tFAZCR07gz16sHSpfK2U1EKCZO7U/jggw9wdnamXr16WR7z8ccf
2935
U716ddzc3Dh+/HiBz3k8+r/5hOPH5c7WTDsEkBOLFSuqDkHPXnZ8mUMfHOLy3cu0WdOGmIQYg53b
2936
wUFmtRg+PJ9f9itWlBsfHj2SebqjjDN5riiGpLdOYcCAAezcuTPL14OCgrhw4QLnz5/n+++/Z+jQ
2937
oQU+Z8StCG2nkONS1KdDR4re2VvZ82vvX/Gu6E3DZQ05duOYwc49cKBchbR6dT4bsLGRW6S7d5er
2938
Fg4e1Gl8imJq9NYpNGvWDEdHxyxf37p1q3Zpq5eXF3Fxcdy6datA5zwefTx3O5nj4mRCtF69CnQ+
2939
JffMzcz55o1vmNVmFm+tfYtVEasMc15zuWH588/lP3u+aDSyIPQPP0DXrrJcq2mPuipKvhlthvX6
2940
9etUrFhR+7hChQpERUXhnMlSET8/P+3ffXx88PHxyXBMYnIil+5eok7ZOgghv9BNm5bFydevh1at
2941
5KSDYlBv136bWmVq0X19d/Zf28/8tvMpYaHfWtivvSYXEU2cmE3dhdxo21ZeWN26yeSJixeDtbXO
2942
4lSUgggODiY4OLjgDeWzqE+uXL58WdStWzfT1zp06CAOHDigfdyyZUtx7NixDMflNsTQqFDhtthN
2943
CCHE1atCODvLQmqZ8vYWYuvWXLWr6Mf9R/dFrw29hNtiN3Eu9pzezxcTI0TZskJEROigsQcPhOjT
2944
Rwg3NyEuXtRBg4qie/n9eDfaklQXFxciIyO1j6OionBxccl3e8+mtzh0CBo3ziL3zYUL8o+qrmZU
2945
dpZ2rOu2jsENBuO9wpt1J/WbsrxMGTnpPHQopKUVsDEbG1izRk5YNGokU3ArShFhtE6hU6dOBAQE
2946
AHD48GEcHBwyHTrKreM3j+Pu7P6kPdkpZCogAHr3lhVZFKPSaDQMe20Yu9/bzdd/fM37m98nPkl/
2947
5TIHDZJfFL7XRTVRjQY++kjuZxgxAj75BJKTddCwohiX3jqF3r174+3tzT///EPFihVZsWIFS5cu
2948
ZenSpQC0a9eOqlWr4urqiq+vL4sKmL745O2TuJWTi9Gz7BSEgLVroW/fAp1L0S2P8h4cG3yMYmbF
2949
aPB9A0Kv5yb3dd6ZmckOYcIEuHFDR402agTh4XILdYsWcne8ohRiRWLzmhCCUjNKce7Dc9iZO1G6
2950
NMTEZDIHePiwXIb699+5zKusGNqGMxsYHjQc3wa+TGg+QS+b3SZMkMWXNmzQYaNpaTBrltwBvXix
2951
XMKqKEZkcpvXDOl6/HUszS1xsnHi+HG5Hy3TRSHr1sG776oOwYS9XfttInwjCLsRRqPljTgTc0bn
2952
5xg/Hk6ckCM/OmNmBp9+Ctu2wdixMGSILNykKIVMkegUTt0+RT1nuXP6zz/lHX0GKSnw008yr41i
2953
0srblWd7n+0Mrj+Y5iub803INySn6m683spKZq348EO4p+vSD56ecjv9/fvQsCFEROj4BIqiX0Wi
2954
Uzh56yR1y9YFsplP2LMHqlQBV1eDxqbkj0ajwbehL8cGH2P/tf14/uBJxE3dfcC+/rpcgDZmjM6a
2955
/CLDuvAAAB5YSURBVE/JknLu6osvZB7vmTN1sORJUQyjSHQKp2JOUdfpv04h0zuFdevUXUIhVNmh
2956
Mjve3cEIrxG0Wd2Gsb+NJeFxgk7anjlTpsDatUsnzaWn0cB778HRo3LJaqtWahJaKRSKRqfwZPjo
2957
+nVZTbFatecOePhQDiD37GmU+JSC0Wg0vO/+PieHnuRG/A3qLq7L9nPbC9xuyZIyc8X//qeHYaSn
2958
qlSRBaPffFMOJ61YoVJkKCat0HcKqWmpnI05S22n2tq7hAzzyNu2yVwH5coZJUZFN5xtnVnTbQ3f
2959
d/iekbtG0vWnrly+e7lAbbZqBe3awejROgoyM+bmMnfS3r0wfz506qTDNbGKoluFvlO4ePci5WzL
2960
YVvcNuv5hLVr1dBREdK6WmtODj1Jw/INabisIV8Ff0Vicv5X+nz7rZxy2l7wm4/s1asHR46Ahwe4
2961
u4O/v7prUExOoe8UTt0+pZ1kznTl0d278va9a1eDx6boj1UxK8Y3H89x3+OcijlFzYU1+fHkj/la
2962
l21nJzOpDxoEBUzUm7PixeHrr2Xln3nzZJK9a9f0fFJFyb1C3ymcvHWSes71ePxYrgR87bXnDti8
2963
GVq2BHt7o8Sn6Fcl+0r83ONnAroEMPPPmXiv8ObPyD/z3E6LFjBgAHzwgYG+vLu7y7uG5s2hfn2Z
2964
vjU11QAnVpTsFfpO4enKo7/+gqpVM6m09tNPaoL5BdCiSguO/u8oQxoMocfPPei+vjt/x/6dpzb8
2965
/OD2bVl/wSAsLGDcOJnBcfNmeZurgwqEilIQhb5TeLpHIdP5hNhYOabUoYNRYlMMy0xjRn/3/pz7
2966
6ByeL3nSbGUzBv86mKj7uSujWby4nH7y84PTp/Ubazo1ashJ6KFD5SqlkSPl5jdFMYJC3Sk8SnnE
2967
1XtXeaXMKxw+LKslpvPLL3KHko2NUeJTjMPawprPmn7GuQ/P4VjCEbclbozYOYKbD27m+N4aNWRx
2968
pl695Epmg9Fo5NjV6dMQHw+1asGPP6qJaMXgCnWn8Hfs31RzrEZx8+KZb1pTQ0cvNMcSjkxvNZ0z
2969
w85gpjGjzqI6fLL7E6Ljo7N93wcfgJubTINhcE5OsHw5/PwzTJ8ut16fOGGEQJQXVaHuFJ4OHcXE
2970
yJGimjWfefHmTZnSuG1bo8WnmAZnW2fmvDmHE0NOkJKWQp1Fdfhox0dE3ovM9HiNBpYskbvjV640
2971
cLBPeXtDWJj8UtOqleyh7twxUjDKi6RQdwqnYk5Rr2w9QkPlZlFz82de3LBBziWU0G/9X6XwcCnp
2972
wndvfcfZ4WcpUawEbkvcGLBlQKaZWG1t5SU0diycPGmEYAGKFZPzDGfPymGkmjVh7lx4/NhIASkv
2973
gsLdKTzZo3DkSCbzCT/9JAeGFeU5zrbOzGg9gwsfX6CaYzVeX/U6nX7sRMjVkHT7HGrXhtmz4e23
2974
9ZgGIzdKl4aFC2HfPrm/oU4d2LRJzTcoelGoi+xUmlOJff33Max3NYYNg86dn7wQFSUHhaOj5ZIS
2975
RclGYnIi/hH+zDk8BztLO0Y1GsU7dd6huLm8doYPl/vLNm9+7m7UWHbvlrUbbGxgxgxo2tTYESkm
2976
KL9Fdgptp3A/6T7lZ5Xn3mfxOJUx4+zZZ1IbzZ0Lf/1lxAFhpTBKE2kEnQ9izuE5nI05y+AGgxnc
2977
YDBOVi/RujU0aQLffGPsKJ9ITZWZfydMgFdflYHVq2fsqBQT8sJVXjsbc5aaZWpy8YIZJUs+l+tu
2978
wwbo0cNosSmFk5nGjA41OrCn3x52993NrYRb1FlUh/e29GTE3H2sXSf46SdjR/mEubmsNf7333KF
2979
UuvWMr/X+fPGjkwp5ApvpxB7llplamWcT7h+Hc6ckSs2FCWf6paty+L2i7ky4gpNKjbhy0Mfwoc1
2980
GfjDLPb8GWPs8P5jZQWjRsGFC1C3rly1NGCAfKwo+VBoO4UzMWeo7VQ7Y6ewcSN07KjmEhSdsLey
2981
52Ovjzk19BRre6ygYYe/aP1rddr5v03Q+SBS0lKMHaJkaytTZpw/L2s4NG4M/fvDuXPGjkwpZIpe
2982
p/Dzz3K5iKLokEajoUmlJgSPCGBK2atE/NKGiXu/ptKcSnz626ecuGUiG8wcHGDiRHmn4OoqJ0J6
2983
91Yb4JRcK9SdQlW72pw5I5NMAnK10cmT0KaNUWNTirbPR9rT03UwtoGH2dFrDxZmFnRY1wG3JW7M
2984
ODiDa/dMIBW2vb2chL50CRo0kOleOnSA/fvVUlYlW3rtFHbu3EnNmjWpXr0606dPz/B6cHAw9vb2
2985
eHh44OHhweTJk3PV7sPkh0Q/iCbuclVq1QJr6ycvbNwI7duDpaUOfwpFyWjmTChVCqaNqcUknylc
2986
GXmFuW/O5cKdC9RfWp+mK5qyIHRBjik19M7ODsaMkZ1Dhw4yh0fjxnIxhkrVrWRG6ElKSoqoVq2a
2987
uHz5snj8+LFwc3MTZ86cSXfMvn37RMeOHbNtJ7MQw2+Ei7qL6orZs4UYOvSZF3x8hNi8WRfhK0qO
2988
Hj6Ul9zgwUKkpf33fFJKkvj1n19F3419hcM0B9FsRTMx7/A8cS3umvGCfSolRYiNG4Vo3FiIl18W
2989
Ys4cIe7dM3ZUih7k9+Ndb3cKoaGhuLq6UqVKFSwsLOjVqxdbtmzJrFPKc9uZzifcuiVz0auhI8VA
2990
SpSArVshIkLuJXt6KRc3L06HGh0I6BrAzU9u8qn3p4RFh+G+1B3PZZ5M3T+VszFn83XtF5i5uaxC
2991
eOiQ3Odw5IicmP74Y/jnH8PHo5icYvpq+Pr161SsWFH7uEKFChw5ciTdMRqNhkOHDuHm5oaLiwsz
2992
Z86kdu3aGdry8/PT/t3Hx4czaWeoXaY2/kdk7ntAbvtv107lOlIMys4OduwAHx/594kT079uWcyS
2993
jq90pOMrHUlOTeaPq3+w6e9NtFnTBqtiVnR6pRMdqnegaaWmWJhbGDb4Ro3kn6goWLxYVoF79VW5
2994
hbtDB5l7SSk0goODCQ4OLnA7etvR/Msvv7Bz506WLVsGwJo1azhy5Ajz58/XHhMfH4+5ufn/t3fn
2995
UVGf5x7Av+ybKDDsuzCI7BoFRFFqrHWJh1brdUlur7GGel1oTW/Sm9g0ak6Ta9Mb2xhzrLUJudEY
2996
E82J2iDEukDCIsgSRETWAYZVZmEJyzDMvPePVwcloiPOwvJ8znnPzDA/hvf3npl5+L3L88LW1hZp
2997
aWn4zW9+g8phU+getCpvzWdrsMJnA15euQ4yGWBqCr4uYft2YM0afZwOIQ/V1sa39HzuOT6++yiM
2998
MXzX+h3OVZxDalUqqmRV+HHAj7FSuBLLhMvgae+p/0oPp1DwsYb33+d5PbZs4cXX1/B1IU9szK1o
2999
9vLyglg8lJpYLBbD29v7vmPs7e1he2eUeMWKFVAqlZBpkR74ZvtNDDSFIjr6TkCQSoFr1/gMC0KM
3000
wM0NyMgATp7kQeFRn0UTExPM9piNPT/ag/ykfNzacQurglYhvSYdEYcjEHE4Ai9deAkXai6gV2mg
3001
3X6srHhUy8nhlz8yGTB7Nk8/f/o0DxpkwtPblcLg4CCCg4Nx6dIleHp6IiYmBp9++ilCQkI0x7S1
3002
tcHV1RUmJibIz8/HunXrUFdXd38Fh0U7xaAC0/ZPw28HOmGisuK5aFJSgNRU/sYlxIhu3+YXrStW
3003
8B3cTEwe/zVUahWuNV/D19Vf46LoIopbihHjFYMl05fg6elPY67nXMN1NfX28ll9H37Ip3s/+yxf
3004
FDd79uhOjhjMmEyIl5aWhl27dkGlUmHLli149dVXceTIEQDA1q1b8f777+Pw4cMwNzeHra0tDhw4
3005
gHnDtk8bfmI3bt/A2s/Xwv+rW9i+HUhMBO//fPZZXggxMqmUz3eYNw84ePDJM6t2K7qRWZ+Jy6LL
3006
uCy6jFp5LRb4LkCCXwIS/BIwx3OOJqOrXtXWAh99BBw7xjO0/uIX/DN3z9ghGTvGZFDQheEndqrs
3007
FE6UnkDm9i9RVgZ42HUB3t58sGzqVCPWlJAhnZ18ko+jI/DJJzxFka5Ie6XIrM/EN/XfILM+E9Wy
3008
akR7RiPeNx4LfRdinvc82FvZ6+4PDqdWA9nZPDh88QXf32HjRp5JwMVFf3+XPJZJExT2ZexDq2QA
3009
qb99Ew0N4JubHz/Ou48IGUMUCuD553mOxrNneYDQh47+DuSKc/Ftw7f4tuFbFLUUIcgpCHE+cZjv
3010
PR+x3rEIcgqCiT66exQK4Ouv+efw/HkgJgZYt45HRGdn3f89orVJExTWn14PgSQRty8+x4cQ1q7l
3011
U1F/+UvjVZKQEajVfA1DWhpf0yAU6v9vDqgGUNxSjNzGXOSIc5DXlIduRTdivWMR7RnNi1c03Ke4
3012
P/rFHkdvLw8Mp04B6el8j9zVq4Gf/YxfzRODmjRBIfJwJMKq/g9PeczGyzt6AQ8PoKaG/ishY9rf
3013
/sbX1Bw/bpys7q3ftyKvMQ/Xmq8hvykfBc0FsLO0wxyPObx4zsFs99nwsPfQzR/s7QX+9S8+SP3V
3014
V0BgIB8ATEzkmwHRILXeTYqgMKgehP3/2CPivBR/fssWCbIvgUOHgEuXjFxLQh4tM5NvG/7KK3wB
3015
sTG/FxljqJXXorClEIUthShqKUJxSzHMTc0x22M2ZrnPQpRbFKLcohAkCIK56RMsZFMqeSK+c+d4
3016
Pxpj/Or+mWf4BkGa5GVElyZFUKiUVmL58eVo212LtjZgyn/+O99UZPt2I9eSEO2IRLw3JSQE+Pvf
3017
x9bcCMYYGrsaUdxajO9av0NJWwlKWkvQ3N2MEJcQRLhGINItEuGu4Qh3DYfHFI/HH6dgjG+ClZrK
3018
u5oKC/lnePlyXmbOpKsIHZkUQeHMrTP438tH0Xk4FaWFA3wPzhs3AE8jrP4kZJT6+oBdu4DLl4HP
3019
P+dT/seybkU3ytrLUNpWitLbpbhx+wbK2sswoBpAmEsYQl1CEeIcglCXUMx0ngmfaT4wNdFyXWxH
3020
B2+I9HQ+YK1W8/61JUt48dBRd9YkNCmCwv6s/biUI4VvxZ/xwbqvgX37+OpLQsahkyeB5GTgtdf4
3021
rek4292kvacdN9tv8iLht7ckt9DR34FgQTCCnYMRLAjGDMEMBAuCESQIwlSrh1waMcZ3jrt4kZeM
3022
DL5UfPFiXhISAFdXg53feDcpgsKmM5tQfXERNkVuwa8Kt/KpHC+/bOQaEjJ61dV8gbClJV+Y7+9v
3023
7Bo9uS5FF25JbqFSWokKaQUqJBWolFaiSlaFKZZTEOQUhCBBEISOQgidhAh0CkSgYyAcbYbN2VWp
3024
gJIS4MoVXrKzee/AokXAwoV8Vzl/f+puGsGkCAoxR2Nw++O/4sxfYzHrGS8gK8swc/wI0SOVCjhw
3025
AHj7beCPfwSSksbfVYM2GGNo7m5GpbQSNfIaVMuqUSWrQo2sBjXyGliYWiDAMQABjgGY7jgd0x3u
3026
FMfp8J3mC2sTC55qIzOTf/azsnhAWLCAbxwUF8e3YaRNtgBMgqDAGMO0/dOgeqcOnV+Uwzx5G+07
3027
SyaUGzd4UlJzcz6FNSLC2DUyHMYY2nvbIZKLUCuvhaiD39Z11KGuow7iLjEENgL4OfjB38EfftP8
3028
4DvVBzO7rSAsvw3X0lpYXSuCSUUFEB7OF9HFxADR0cCMGRMzyj7ChA8KTV1NCD/0FMLOtyEr9r+A
3029
KVP4mAIhE4hKBRw9Crz+Ou9Wev11vk/DZKdSq9DyfQvqOupQ31GPhs4G1Hfy24bOBoi7xFCpVQi2
3030
9kaCzB4xTSYIr+uBb9Vt2HT0QBEZBrPoaFhHz4fJnDk8UDxpUqoxbsIHhUu1l/DC8TewWp6BA2cD
3031
+aY6UVHGrh4hetHWBvz3f/MJOXv2AC+8QHvePEpnfyfEXWI0djWisatRc7+rSQTHm7XwqWpDaOMA
3032
5rSZwrVbjUZfB7QLPfF9qBDqiDBYRc2Bi4cQ7lPcIbAVaD+Daoya8EHhUP4hvHPsBg57b8PyI6v5
3033
KmYaYCITXFERn0vR3Ay89RZf40Bv+9HrU/ahubsZrU0V6C/Kh8n1Uky5WQVBdTM8xR2Q25niuitw
3034
3VmFRp+pkAa4oy/QDw5OnnCb4gY3O15c7Vw1RWAreLLFfXoy4YPCzvM7cfygEKIZcjhafA+8846x
3035
q0aIQTDGcye99hq/v2cP8NOfUnDQObWapwcvLcVgaQkU14thUlYGK5EYvQJ7tPkI0OBpi2oXc9wU
3036
qFA0tQe3TGWQKzrgYO0AF1sXuNi5wNXOFS62LnC2dYazrTNcbF0gsBVoHgtsBLC1sNVPgsJ7TPig
3037
EH90Ca4f/h06B1+GyeHDfMYBIZMIY8A//8lzKKlUwEsvAevX8+msRI8GB/lS9PJyXioqeLl1Cxgc
3038
BJsxA/3TfdDt6waJpwOa3aegXmCGRst+SPqlaO9ph7RPCkmvRHMfAAQ2AghsBRDYCOBk4wSB7Z3b
3039
O4+dbJzgaO3Ib20c4Wjt+FjBZMIHBcGbXlh+5QQ+ubGeX0tPwtkEhAA8OKSn82ms5eV84duWLZQT
3040
0iikUr7grqKCd2lXVw+VwUEgIICX6dOHir8/ej1dIDVVQNIrgaxPBmmfFNJeKeT9cs1jeR+/f/dn
3041
8j45BtWDmgDhaOMIB2sHOFrzWwdrBwQLgrFp1iYAow8KY68j7AE6+zvRrezEf5jm8+tmCghkEjMx
3042
4dt9rljB13b95S9AUBDPMferX/G1XdS1ZCACAS/DdowEwFN41NTwLimRCCgr4xlj6+pgW18PWzs7
3043
+Pj5Ab6+Q8VHyHeyC/XhC/WGzS5QDCog75dD3idHR38H5P389m7RxX7e4+JKIa8xDz/+yzbUnbeG
3044
04E/8MRZhBANuZxvhHbkCN/35rnneJkxw9g1Iw/EGN/Qu74eEIuBhgZ+v7GRPxaLAYmEp/Xw9ga8
3045
vHiOt7u3Hh5Dxcnpgf8FTOjuo5Sij/Da3rNoyLwC09tt1IlKyAgY44lHP/mE51by8gLWrOF73YSE
3046
GLt25LEolUBLC9+6r7GRd5s3N/PHLS1DpbeX54hydwfi43m/IiZ4UEj67BXYvnkTfw2zA06cMHaV
3047
CBkXBgd5RogvvwTOnOHrPVet4hfa8fG63TeaGFFfH1/Y0trKZ1DNnw9gggeFp97+KQ4drEfcO6/y
3048
/V8JIY9FrQYKCvjU1vR03r29YAFPPJqQwHfOtLAwdi2JLk3ooOD7khAV77XAur2F1vwTogMyGb+K
3049
yMjgtzU1fF+HefOA2FgeJHx9acB6PBttUBgX03jm19bh+6cWTfqAkJGRYewqjBnUFkNG0xZOTnyc
3050
4d13ge++4+Oaf/gD3wkuJYUnHBUIgKefBl58EfjHP4DcXKCzU/f11yV6Xzw5vQaF9PR0zJw5E0FB
3051
QfjTn/70wGN+/etfIygoCFFRUSguLn7gMT8rtYb9c2v0WdVxgd7wQ6gthuiiLRwcgKVL+arpr77i
3052
45nl5cDvfscnuGRl8X2lvbz4mGZ8PLB5M0/1ffw4f14s5uMYxkTviyent3UKKpUKO3fuxMWLF+Hl
3053
5YXo6GgkJiYi5J4pEOfPn0d1dTWqqqqQl5eHbdu24erVqz94rWX1/bD6t0R9VZUQ8gBubkNbJ9/F
3054
GJ/wUlnJ12yJRHyr5bo6XiQSwMWFz6L08OATYtzd+cxKFxe+wM7ZmV+pODkBNjbGOjsyEr0Fhfz8
3055
fAiFQvjf2Upqw4YNOHv27H1B4dy5c9i0ia++i42NRUdHB9ra2uDm5nbfa9W4uGMObcNHiNGZmPBp
3056
8p6ewI9+9MPnlUo+Caaxkd+2tvIgUloKtLfzIpHwdRVSKX89Bwdg2jRepk7lvcRTp/LZUnZ2Q8XW
3057
lgeRu7fW1rxYWfFiaclfVyzm9y0s7i8TPFO27jA9OXXqFHvhhRc0j48dO8Z27tx53zGrVq1i2dnZ
3058
msdLlixhBQUF9x0DgAoVKlSojKKMht6uFLRN2sSGjY4P/73hzxNCCNEfvQ00e3l5QSwWax6LxWJ4
3059
e3s/9JjGxkZ4eXnpq0qEEEIeQW9BYe7cuaiqqkJdXR0GBgbw2WefITHx/sHixMREfPzxxwCAq1ev
3060
wsHB4QfjCYQQQgxHb91H5ubmOHToEJYtWwaVSoUtW7YgJCQER44cAQBs3boVK1euxPnz5yEUCmFn
3061
Z4eUlBR9VYcQQog2RjUSoQdpaWksODiYCYVCtn///gcek5yczIRCIYuMjGRFRUUGrqHhPKotjh8/
3062
ziIjI1lERASbP38+KykpMUItDUOb9wVjjOXn5zMzMzP2xRdfGLB2hqVNW1y5coXNmjWLhYWFsYSE
3063
BMNW0IAe1Rbt7e1s2bJlLCoqioWFhbGUlBTDV9IANm/ezFxdXVl4ePiIxzzu9+aYCAqDg4MsMDCQ
3064
iUQiNjAwwKKiotjNmzfvOyY1NZWtWLGCMcbY1atXWWxsrDGqqnfatEVOTg7r6OhgjPEPx2Rui7vH
3065
LV68mD3zzDPs9OnTRqip/mnTFnK5nIWGhjKxWMwY41+ME5E2bbFnzx72yiuvMMZ4Ozg5OTGlUmmM
3066
6urVN998w4qKikYMCqP53hwTaS7uXdNgYWGhWdNwr5HWNEw02rRFXFwcpk2bBoC3RWNjozGqqnfa
3067
tAUAvPfee1i7di1cXFyMUEvD0KYtTpw4gZ///OeaCR3OE3QrNm3awsPDA11dXQCArq4uCAQCmJuP
3068
iz3FHsvChQvh6Og44vOj+d4cE0GhqakJPj4+msfe3t5oamp65DET8ctQm7a41wcffICVK1caomoG
3069
p+374uzZs9i2bRsA7adCjzfatEVVVRVkMhkWL16MuXPn4tixY4aupkFo0xZJSUkoKyuDp6cnoqKi
3070
8O677xq6mmPCaL43x0To1NWahongcc7pypUr+PDDD5Gdna3HGhmPNm2xa9cu7N+/X5MRcvh7ZKLQ
3071
pi2USiWKiopw6dIl9Pb2Ii4uDvPmzUNQUJABamg42rTFW2+9hVmzZiEjIwM1NTVYunQpSkpKYD8J
3072
k2o+7vfmmAgKtKZhiDZtAQDXr19HUlIS0tPTH3r5OJ5p0xaFhYXYsGEDAEAikSAtLQ0WFhY/mP48
3073
3mnTFj4+PnB2doaNjQ1sbGywaNEilJSUTLigoE1b5OTk4Pe//z0AIDAwENOnT0dFRQXmzp1r0Loa
3074
26i+N3U24vEElEolCwgIYCKRiCkUikcONOfm5k7YwVVt2qK+vp4FBgay3NxcI9XSMLRpi3s9//zz
3075
E3b2kTZtUV5ezpYsWcIGBwdZT08PCw8PZ2VlZUaqsf5o0xYvvvgi27t3L2OMsdbWVubl5cWkUqkx
3076
qqt3IpFIq4Fmbb83x8SVAq1pGKJNW7zxxhuQy+WafnQLCwvk5+cbs9p6oU1bTBbatMXMmTOxfPly
3077
REZGwtTUFElJSQgNDTVyzXVPm7bYvXs3Nm/ejKioKKjVarz99ttwcnIycs11b+PGjcjMzIREIoGP
3078
jw/27dsHpVIJYPTfm2N+5zVCCCGGMyZmHxFCCBkbKCgQQgjRoKBACCFEg4ICIYQQDQoKhDzE+vXr
3079
UVNT84Off/TRR0hOTh7VayoUCixatAhqtfpJq0eIzlFQIAR44Gro6upq9PT0IDAwUKd/y8rKCgsX
3080
LsSZM2d0+rqE6AIFBTJp1dXVITg4GJs2bUJERMQPcsKcPHnyvpXRKSkpCA4ORmxsLHJycjQ/b29v
3081
x9q1axETE4OYmBjNc+3t7Vi6dCnCw8ORlJQEf39/yGQyAHyDqU8//dQAZ0nIY9LZsjpCxhmRSMRM
3082
TU1ZXl7eA59fvnw5KywsZIwx1tzczHx9fZlEImEDAwNswYIFLDk5mTHG2MaNG1lWVhZjjK82DwkJ
3083
YYwxtmPHDk2u//T0dGZiYqJZVdvf3888PT31en6EjMaYWNFMiLH4+fkhJibmgc/V19fDw8MDAJCX
3084
l4fFixdDIBAA4GMNlZWVAICLFy+ivLxc83vd3d3o6elBdna2poto2bJl9+WosrKyglqtRn9/P6yt
3085
rfVyboSMBgUFMqnZ2dk99Hl2Z5zhbhbWe39+N9skYwx5eXmwtLQc8fdHeu2JmOmXjG80pkDICPz8
3086
/NDS0gIAiImJQWZmJmQyGZRKJU6dOqU57ic/+QkOHjyoeVxSUgIAWLBgAT7//HMAwIULFyCXyzXH
3087
KBQKmJmZwcrKyhCnQojWKCiQSe1h/6nHx8ejoKAAAN/Ja+/evYiLi0N8fDzCwsI0xx08eBAFBQWI
3088
iopCWFiYJjHbnj17cOHCBUREROD06dNwd3fX5PMvLi5GXFycHs+MkNGhhHiEjKC2thbJyclITU0d
3089
1e8PDAzAzMwMZmZmyM3NxY4dO1BUVAQA2L17N6Kjo7F69WpdVpmQJ0ZjCoSMICAgAPb29qipqRnV
3090
WoWGhgasW7cOarUalpaWOHr0KADedZSVlYU333xT11Um5InRlQIhhBANGlMghBCiQUGBEEKIBgUF
3091
QgghGhQUCCGEaFBQIIQQokFBgRBCiMb/A8Js84T3/rLnAAAAAElFTkSuQmCC
3092
"></img>
3093
</div>
3094
</div>
3095
</div>
3096
</div>
3097
</div>
3098
<div class="cell border-box-sizing code_cell vbox">
3099
<div class="input hbox">
3100
<div class="prompt input_prompt">In&nbsp;[19]:</div>
3101
<div class="input_area box-flex1">
3102
<div class="highlight"><pre><span class="c"># Plot PDF dP(r) / dr</span>
3103
<span class="n">r_max</span><span class="p">,</span> <span class="n">r_step</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.01</span> <span class="c"># deg</span>
3104
<span class="n">r</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">r_max</span><span class="p">,</span> <span class="n">r_step</span><span class="p">)</span>
3105

    
3106
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">gauss_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;Gauss$(\sigma=0.2)$&#39;</span><span class="p">);</span>
3107
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">king_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">1.5</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.1, \gamma=1.5)$&#39;</span><span class="p">);</span>
3108
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">king_C</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">3</span><span class="p">),</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;King$(\sigma=0.2, \gamma=3)$&#39;</span><span class="p">);</span>
3109
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;r (deg)&#39;</span><span class="p">)</span>
3110
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;dP / dr (deg^-1)&#39;</span><span class="p">)</span>
3111
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">)</span>
3112
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">(</span><span class="mf">1e-3</span><span class="p">,</span> <span class="bp">None</span><span class="p">)</span>
3113

    
3114

    
3115
<span class="n">plt</span><span class="o">.</span><span class="n">semilogy</span><span class="p">();</span>
3116
</pre></div>
3117

    
3118
</div>
3119
</div>
3120
<div class="vbox output_wrapper">
3121
<div class="output vbox">
3122
<div class="hbox output_area">
3123
<div class="prompt output_prompt"></div>
3124
<div class="output_subarea output_display_data">
3125
<img src="
3126
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8jWcbwPHfScQeCUmMBBExEyJGbFKqxKa24lXaWtVW
3127
vdqqFq2WDqW8dKBF7RV775ltJkRCEIQkCAkZktzvH3edSiVknJMn4/5+Ps/n7Tl5zvNcJ++R69zr
3128
unVCCIGiKIqivIKJ1gEoiqIoeYNKGIqiKEqGqIShKIqiZIhKGIqiKEqGqIShKIqiZEghrQPIKp1O
3129
p3UIiqIoeVJWJ8fm6RaGEEIdQjB16lTNY8gth/pdqN+F+l28/MiOPJ0wFEVRlJyjEoaiKIqSIXl2
3130
DANg2rRpuLm54ebmpnUoBvfwIVy6BCEhEBYGN2/CrVtw/z48eADR0fD4MTx9CgkJbnz7LRQqBGZm
3131
ULgwlCwJZcrIw9ISKlaEChWgUiWwt5eHjQ2Ymmr9Tg0rP34Wskr9Lv6hfhdw+PBhDh8+nK1r6ER2
3132
O7U0otPpst0fl1tERICXF3h7y+P8eXj0CGrXhho1oEoV+cfdxkb+8Tc3l0fx4jI5FC4MJiaQlCQT
3133
SGIixMTIpBMdDffuQXi4PG7dgtBQeURFQfXq4Ogoj/r1oVEjqFwZ1JwCRcmfsvO3UyUMDcTFwaFD
3134
sG8f7N8vWw+urv8czs5gayuTgLHjCAqCgAB5nD0Lfn6QnAxNmkCLFtCqlYypeHHjxqIoSs5QCSMP
3135
ePIEdu2C9eth9275bb5jR3j9dWjcOPd0DQkBt2+Djw+cOAHHj8O5c+DiImN9/XVo2lR2fSmKkveo
3136
hJGLnT0LixbB6tXyj27fvtCrF1hbax1Zxj15IpPH/v3yuHIFOnSALl2gc+e89V4UpaBTCSOXSUmB
3137
LVvg++9ld9PIkfD223JsID+4e1e2lrZvlwmkfn3o0wd695ZdaYqi5F4qYeQSSUmyJTFzJpQoAZ99
3138
Bt27y9lL+VV8vByL2bgRtm2DOnVg8GDo1w/KldM6OkVR/k0ljFxg1y74+GOwsoIvvoD27QveTKPE
3139
RNizB1aulL8PNzfZsurcWY15KEpuoRKGhgIDYcIEuHI9nvHTg7FvEMbDhGgexj8kJjEGE50JhUwK
3140
UcikEKWLlMaquBVWJayoULIClUpVwkSXP9dOxsTAhg3wxx9yLcmQIfDuu+DgoHVkilKwqYSRw4QQ
3141
XLh7ic8W7WdfyAFKOpzlsS6cahbVsDO3w7yoOWWKlKFUkVIIIXia8pSnyU95lPCIqCdRRD6JJDwm
3142
nPtx96lqXhV7C3scrRypZ12PeuXr4WjlSJFCRbIWXHKyHKV++lT+d3KyfN7M7J+VfUWLGn/O7nOC
3143
gmDJEli6VA78jx4NXbvm7646RcmtVMLIIdejr7PIfxGLfZfx4J4JVjEd+KRfezrVa0w1i2oUMsnc
3144
X8C4p3Fci75GyP0QAiIDOB9xnnN3z3H1wVUcrRxxtXGlqU1TWtu2oGo06EJC4MaNf5Z+37kjV+Xd
3145
uyeXgD9+LAdSihWTicHU9J/5uklJ8khMhIQEeU6JEnIpuIUFlC0rBx3Kl5dHhQpypaCtrTxKlsz2
3146
7y8+XrY6FiyQiwjHj4cRI2QIiqLkjAKbMKZOnZojpUGO3zjOt8e+xeuWFw1M3sJ/0Tt8P9GRkSN1
3147
hh+nePCAeM/j3Dm2i3gfT0pcuoLlnUfcL2nKg8qWmNnXoHztxpg7OMo/6uXKyeXfFhYyARQt+urB
3148
k5QU2Qp5/FguBX/wQB5RUXLZ+d27MhndvCmPsDB57WrV5OHgADVr/nNYWmb6bXp7w9y5ck3KsGHw
3149
0UdyRbuiKMbxrDTI9OnTC2bCMHboNx7eYNK+SZwMO8nnLafhuXgA3ieKs2kT1KploJs8eCDnph45
3150
AkePypodLi7QsKH8X2dnRI0ahMTf5sj1IxwMPciB0AOULlKaDvYdcHdw57Vqr1GycPZbAOkSQiaS
3151
0FC4elUuxAgOhsuXZX+TmRnUrSsPJye5VL1ePShd+pWXDguDefNkl1W3bjBpkixToiiKcRTYFoax
3152
Qk8RKcw6PovZp2bzvuv7vFVtEoP6FqdqVTmIW6pUNm8QEiLnoe7YAWfOQOvW8Npr0KaNTBKvmFIk
3153
hOB8xHn2XtnLrpBdeN/ypqlNU7rW7ErXml1xKJuDI8tCyNbIs/oiFy7IpeEBAbJrq2HDf44mTWTX
3154
VxoePICFC2XyaN0avvxSru9QFMWwVMIwoOj4aIZ4DCE6PpqVvVeSGFmFDh3k4rvJk7MxVTY8XC7S
3155
WL1ajkO8+aYc+X3tNTmekA0xCTEcCD3A9svb2X55OxbFLOhRqwc9a/fE1cZVm5lYycmyFeLvLw8/
3156
P3lYW8viVE2bQvPm0KCBrJ74t8eP4bff4Icf5I+nTVOJQ1EMSSUMAwmICKDX2l50dOjI7Ddmcymg
3157
MO7uMHWqnBKaaULIrqaFC+Xqtp49YdAgmSSMNEUoRaTge9uXLUFb2HJpC/fi7tGjVg961+mNm50b
3158
hU0Lv/oixpKcLLuwvL3B01MeISEyabRqJY8WLaBsWZ48gd9/h+++k+s5pk+XwyWKomSPShgG4HnT
3159
k+6ru/PjGz8y1HkoXl5ylfa8edC/fyYv9mzJ96xZ8vGYMXIhQgb69A0t5H4IHhc92HRpE0FRQXSt
3160
2ZU+dfvwRvU3KFqoaI7H84KYGFnb/VmlQy8vsLODtm2hTRtim7gxb5UVP/0k8+306XLylqIoWaMS
3161
RjZdiLjA68tf588ef+Jew52AAGjXTg7Edu2aiQs9fQrLl8vaIJUqwZQpskpfLlnyfevRLTZd3MTG
3162
ixs5c+cM7jXc6Vu3L+4O7hQzy163mME8fSq7sI4ckcfx41ClCvEt27E2oh1TD7nx1tgyTJqkSf5V
3163
lDxPJYxsCH0QSus/W/NDhx8YWG8gt27JXpFvvoG33srEhXbtkku+K1aUfVht22Y7NmO6G3sXj0se
3164
rA9cj99tP9xruNOvbj86OXTKPckDZGvN319uIHLgACknTxFazJGtca9jP+oNun7dDNNiGnazKUoe
3165
oxJGFt2NvUurP1vxYdMPGes6locP5QydwYPhk08yeJGgILmIICQEZs+WTZJc0qLIqIjHEWy6uIl1
3166
Aes4fec0XWp0oZ9jPzpW75j1FefGEh8Pp05xZ8U+otftw+bJZRKatsVycEfo1EluIagoSrpUwsgC
3167
IQRdVnXBuYIzM9vP5OlT+femTh2YPz8Df/OTk2HOHDlO8dln8P77qWb75FV3Yu+w6eIm1gas5fzd
3168
83Sv1Z3+jv153f51zExzVwVBIWDbH5Hs/3Q/PUvspe2T3ZiWKQnu7rLiYdu22Z6Bpij5jUoYWbDE
3169
fwkLfRfiOcITM1MzPv9czvrcsSMDu99dvgz/+Y9MEH/8Afb2WY4jN7sdc5v1AetZG7CWy/cu06tO
3170
L/o79sfNzi3TZVCMKS5O7j0yf57gu8HnGGa1k0L7dsk1Lm3byp2eunTJPxuSKEo2qISRSdejr9N4
3171
UWMODTuEk7UTBw/K8YrTp+Vas5datUoWQfrySxg3LkeL+GnpevR11geuZ82FNYQ9CqNP3T4McBxA
3172
yyotc03F3atX4cMPZT7/9Vdwc34g663v2CHHmGxs5HLybt3kIsIC8v+dojxPJYxMSBEpdPirAx3s
3173
O/Bpq0+JipLLAP74A9544yUvTEqSdSu2bIFNm2T5iwIq5H4I6wLWsebCGu7H3aefYz/6O/bH1cYV
3174
XS4Yv9m8Web09u3lAkBLS2QXoqen3OVp2zZZrLFrV+jRQ56ouq6UAkIljExY6LOQ5WeXc/zt45jq
3175
CtGjB9SuLbs00hUVJTfjLlJEtjDSKW9REF2MvMjagLWsubCGhOQEffJwqeCiafKIiZEbWa1eLeci
3176
DB78r3GpkBDYulUep0/LpNGzp0wi6v9fJR/Ldwnj8ePHjBkzhiJFiuDm5sagQYNeOCcrbzomIQb7
3177
efYcHnYYR2tHFi+WXRcnT75kvPrWLXj9ddmNMXNmBgY4CiYhBOfunmNtwFrWBqzFRGdCf8f+9HPs
3178
Rz3repolDx8fWUK9ShX45Zd0hjHu3ZMblG/eDAcOyO6qnj2hVy+1SbmS7+S7hPHXX39RtmxZunTp
3179
woABA1izZs0L52TlTf9w4gd8w31Z22ct0dGyZbF7t+ySStOVK3Lh3ahRsjtKyRAhBH7hfqwLWMe6
3180
gHUUMyumTx51rermeDyJiXIy2/z5cn3NO++8ZBbckyewdy94eMiuqxo1oHdvedSokaNxK4oxZGvC
3181
kMghw4cPF9bW1sLJySnV87t27RK1atUSDg4OYtasWUIIIWbOnCnOnj0rhBBi0KBBaV4vs6E/SXwi
3182
KvxYQZy9I6/70UdCvPvuS15w4YIQNjZC/PJLpu6jpJaSkiI8wzzFR7s/ErY/2QrHBY5i2qFpIjAi
3183
MMdjOX9eiEaNhOjYUYiwsAy8IDFRiL17hRg1Sojy5YWoV0+IadPkZyMlxejxKooxZOfPfo4ljKNH
3184
jwp/f/9UCSMpKUlUr15dhIaGisTEROHs7CwCAwPFX3/9JbZv3y6EEGLAgAFpXi+zb3q+13zRbVU3
3185
IYQQFy8KYWkpxN276Zx89aoQFSsKsWJFpu6hvFxySrI4ceOE+GDXB8Jmto1wXOAoph+enqPJIzFR
3186
iK+/FsLKSoilSzPxdz8pSYijR4X44AMhbG2FqF1biClThDhzRiUPJU/JTsLI0S6pa9eu0a1bN86f
3187
Pw/AqVOnmD59Ort37wZg1t/F+saPH8+4ceMoWrQorVu3ZuDAgS9cKzPNqsTkRGrMr8G6PutoatuU
3188
zp3lsMSECWmcHBUFLVvKhXjjxmXtjSqvlCJSOBV2ivWB69kQuIEyRcvQt25f+tbtS12rukYf8zh7
3189
VtaDrFFDVsUtVy4TL05JkRV3N2yQR+HCclJE375y9lwumCmmKOnJTpeUpquvbt26ReXnRiFtbW3x
3190
8vKiePHi/PHHH698/bRp0/T//bKtWlecW0HNcjVpatuUnTvl0MTmzWmcGBcnS9T27KmShZGZ6Exo
3191
WaUlLau05KeOP+F505MNgRtwX+lOicIl6FO3D33q9KF++fpGSR7OzvJv/uefy/9esgQ6dsxo8CbQ
3192
rJk8fvgBfH1h/Xo5SG5mBv36yeRRv75KHormnm3NagiatjA2btzI7t27WbRoEQArVqzAy8uL+fPn
3193
v/JaGc2SySnJ1F5Qm0XdFtG2qhvOznLgs1u3f52YkgJ9+kDx4rLirFrUpQkhBD63fdgQuIENgRsw
3194
0ZnwZt03ebPOmzSp1MQoyePgQblwv08fORGuSFbLZwnxT/JYt07ur96vn6yPr/adVXKJ7LQwNP2r
3195
aGNjQ1hYmP5xWFgYtgaexnj8xnFKmJWgbdW2HDwo80KaJct//BHu3pUr+FSy0IxOp8PVxpXvO3zP
3196
lfFXWNd3HYVMCjHUYyhV51blg90fcOTaEZJTkg12z3btZBWRa9fkLn9BQVkOXk7J/f57uf/5smVy
3197
C8FOnWTC+PpruQxdUfKq7A+hZFxoaGiqQe+nT58Ke3t7ERoaKhISEvSD3hkBiKlTp4pDhw699Lzx
3198
u8aLr498LYQQoksXIRYtSuMkLy85CnrtWkbfipLDUlJSxIW7F8TXR74WLr+6CKvvrcSILSPEjss7
3199
RPzTeAPdQ06Ks7QU4s8/DXJJKTlZiOPHhXj/fSEqVBDCxUWI774TIjTUgDdRlJc7dOiQmDp1at6Y
3200
JTVgwABRsWJFUbhwYWFrayv++OMPIYQQO3fuFDVr1hTVq1cX3377bYavl5E3nZKSImx/shUBEQEi
3201
KEjmhCdP/nXSw4dCVK8uxPr1mXk7isau3r8qZp+cLVr90UqUmVlG9F/fX6w+v1o8jH+Y7WufPy9E
3202
3bpCDB0qRGysAYJ9XlKSEAcOyDndlpZCNGsmxNy5Qty+beAbKUraspMwcuXCvYzISD+c9y1vhm0e
3203
xsWxFxk3DszNYcaMf500ZIgct/jtN+MFqxjV3di7bLu8DY9LHhy7foyWVVrSo1YPutfqTqVSlbJ0
3204
zcePYexYOTC+bh04ORk4aJC7C+7fD2vWyBIlLi4wcCC8+aYqT6IYTb5b6Z0ROp2OqVOnvnR21Kf7
3205
P8XUxJSJLt9gbw8BAXLnVL1162DaNDlQWbx4ToStGFlMQgy7Q3azJWgLO4N34lDWQZ88nKydMj1o
3206
vnQp/Pe/8NNP8ruF0cTHw86dsvjV3r1yJ69Bg+SsvZIljXhjpaB4Nltq+vTpBTNhvCx0IQQ1/1eT
3207
NW+u4eDKRpw7B3/99dwJjx/L2iBr1sh1F0q+8zT5KUeuH2Fr0Fa2Bm3FRGdC91rd6VazG22qtsnw
3208
hlDnz8sv/e3bw9y52ZhFlVGPHsmqyKtXw4kTcjOogQPl4Hk+2KRL0VaBbWG8LPQLERfouqorwWND
3209
qV5dh4cHNGr03AlTp0JwsKw+q+R74u/iiNsub2Pb5W1cvneZjtU70rVmV9wd3ClX/OUr9x4+hOHD
3210
4eZN2LgxB/diioqSiwNXrYLAQLnWY9AgaNNGFcJUskQljDRMPzydhwkP6V7kJyZMAH//5354/brM
3211
HqdPq13YCqjwmHC2X97O9uDtHAo9hHMFZ7rW6ErXml3TXWkuhFynN2eO/PKfTk+o8YSFyRbxqlUQ
3212
EQEDBsjk0bChWiCoZFiBTRgvG8Nw/tWZBZ0XsHFOKyws5AZ5ev37Q926spWhFHhxT+M4dO0QO4J3
3213
sOPyDnQ6HV1qdKFzjc68ZvcaxcxSb660b58cz5g8WVaQ0eRvdWCgzFqrVsnV5YMGyW4rVVFXSYca
3214
w0gn9JD7IbT6oxU3P7pFzRqmeHg8t0He0aPyX/vFi2qgW3mBEIKAyAB2Bu9kR/AOToefpnXV1rg7
3215
uNO5RmfsLeT+7aGhsnfI2VlOsCtaVLOA5VSuVatg7Vq58cegQbL1UaGCRkEpuVmBbWGkF/o8r3mc
3216
jzjPB9UW0bWr/Met0yH/cTVvDh98IL+NKcorRMdHs/fKXnaF7GJX8C7KFC2Du4M77g7uNLZqy+h3
3217
ihIWJnftrVhR42CTkuQGUKtWyWm6TZrIrQZ79YLSpTUOTsktVML4l+FbhtPCtgWRe97hzh2YN+/v
3218
H5w6BW+9JcszqAFDJZNSRApn7pxhV/Audl/Zzdk7Z2lVpRVc6Yj/uk5s+7MmTZrkkrGEJ0/kLoIr
3219
V8Lhw7Ky4qBB4O6eA9O8lNyswCaM9MYwGv3eiIWdFzL+zaZ8840sZQ7IQnCtWsH48Tker5L/PIh7
3220
wIHQA+y5sgeP87t5cM+UdlU7MrpDR9pXa0+ZomW0DlG6f19O7Vq58p85ws9mWqm6aQWGGsNII/Sk
3221
lCRKzyzN+SGRNHYuQUSEHBPk+nU5m+TaNShVKsfjVfI3IQQbjwYyctYerJvvJdzsBPXL16eDfQfe
3222
qP4GrjauFDLRdDcBKSxMDpavXCkTycCBstVdv77WkSk5pMC2MNIKPTAykJ5rejKxyGUOHZL/NgC5
3223
J3dSklyyqyhGcvu2XJxd0zGOtz47zuGwfey9spdr0ddws3Ojg30HOlTvQI2yNYy+SdQrXbggE8eq
3224
VXKMY9AgeVStqm1cilGphPGcNRfWsCFwA/HLN/DWW3KyCLGxYGcHPj5QrVqOx6oULI8fy4l49++D
3225
hwdYWMh6VwdCD7Dv6j72XdmHqYkp7au153X712lXrR0VSmo4oyklRa4oX7lSLhKsU0cOlvftm8mt
3226
CJW8QCWM50w+MBmTlKLMe/NLbtyQBQdZsEDukrNxY84HqhRIycmyBtWuXbJE1PPfU4QQXL53mf1X
3227
97Pv6j6OXD+CTSkb2tu3p3219rSt2la78Y/ERNizRyaPXbugbVuZPLp1U9PQ84kCmzDSGvTuuqor
3228
Tokj8VvZk337kN+eateWe3C2bq1ZvErBNH++3MVvyxY5yzUtSSlJ+If7c+DqAQ6EHsDrlhd1rerS
3229
rlo7XrN7jZaVW1KicImcDRxkTSsPD9ll5e0t+9oGDZJFtQrlgvEYJVPUoHcaoVeZU4VOdw5TtbQ9
3230
n3+OnEo7cqTsr9W6z1gpkLZulR/BpUtlHcFXiU+Kx/OmJwdCD3Ao9BBn7pzBpaILr9m9hpudG81t
3231
m7+w+tzo7tyRCwNXroQbN2S1hMGDZRZU/67ylALbwvh36Pfj7mM3147mR6IZN9ZE7tv96adyzcU3
3232
32gTqKIAnp7Qsyd8+y28/XbmXvs48THHbxzn8PXDHAo9xIWICzSq1Ag3OzfcqrrRzLZZziaQy5f/
3233
mWklhEwcgwZBzZo5F4OSZSph/O3ItSNMPjiZa1+c4MQJOc5N3bryq52rqxZhKopeUJBcNzd8OEyZ
3234
kvUv5jEJMRy/cZwj149w5PoRzt89j0tFF9pWbUvbqm1pUblFznRhCSH3klm5UrY+bG1l8lBlSXI1
3235
lTD+Nt9rPv43A9n09i9ER4MuJFgO2t28qRYoKbnCnTsyabRsKSsQGOJjGZsYy8mwkxy9fpQj149w
3236
Ovw0TtZOtKnahtZVWtOqSissillk/0Yvk5QEhw7J5PFswGbQIOjdW5UlyWVUwvjbO9veoWRMQ7wX
3237
jObECWD2bNl8VtuvKrnIw4dy/LhiRVi+3PB7IsU9jcP7ljdHrx/l6I2jeN30ws7cjtZVW9O6ijxs
3238
StsY9qapAoiDbdvkYPmhQ/DGG7LlocqS5AoFNmH8e5aU6yJXWsTMISG4Jb/8gix98Mkn0KWLprEq
3239
yr/Fx8uem7g4OdvbmLuwPk1+yuk7pzl2/RjHw45z/MZxShYuSesqrWlZuSWtqrSijlUdTHRGaIU/
3240
ePDPBlDnzv2zAVTbtqqeWw5Ts6SeCz05JZnSs0rT51o4TRuUZky/KKheHe7e1bD2tKKkLykJ3n0X
3241
Ll2CHTvkAr+cIITgUtQlToSd4PgNmUDux92nReUWtKzckpZVWtKkUhPDD6SrDaByhQLbwng+9Mv3
3242
LtNpRSesV1/lxx+h1ZVlsi910yYNo1SUl0tJgY8/lj03e/ZA+fLaxHEn9g4nbpzgRJg8LkRcwMna
3243
iRaVW9DCtgXNKzfHtrSt4W74/AZQhQr9swGUmmlldCphABsCN7Di3Ar2j9zMzZtgPuJN2VE8bJiG
3244
USrKqwkBX30l/3bu2yf3QNJa3NM4fG/7ciLsBKdunuJk2EmKFSpG88rNaW4rD5eKLhQ2zeYAzL83
3245
gKpcWSaP/v2hUiXDvBklFZUwgC8PfcmDB7Dlw6+4cTleflW7cgUsLTWMUlEybu5ceezfDw4OWkeT
3246
mhCCkPshnLp5Sh5hpwi5H4JzBWea2TajmU0zmtk2w7a0bdaLKj6babV6NWzeDA0ayFbHm29C2bKG
3247
fUMFmEoYQI81PagZN4SLG/uwfcxOmDVLbseqKHnI77/L1sa+fbIGYG4WkxCD721fPG96curmKTxv
3248
emJmakZTm6Y0s21GU5umNKrUiJKFszCiHx8va1mtWgV798pB8kGDZE2rEhqUSclHVMIA5nrOJWzP
3249
mxSOr8xM3WQ5V3HaNO0CVJQs+usvWY1/9+7n9qLPA4QQXIu+hudNT7xueeF1y4tzd8/hUNYBVxtX
3250
XCu50tS2KXWt6mZub5BHj2SLY/VqWeqnc2fZ8ujY0fBzkgsAlTD+1qePbL0OXNkVRoyQU/gUJQ9a
3251
vx7GjZOVbhs10jqarEtMTuTsnbN43/LG+7Y3Xje9uPnoJi4VXXC1caVJpSY0qdQEewv7jHVlRUbK
3252
X87q1XDxovw3PnCgmqabCQU2Yfx7HUatWnJOu1OXqnDgQO7rCFaUTNi8Gd57T27NnV6l27woOj4a
3253
v9t+eN/yxue2Dz63fXjy9AmNKzXWJ5DGlRq/enHhjRtyoHz1armEvl8/OVW3aVM1TTcNah3Gc6E/
3254
eSL3enl0IxqzarayGavKgSh53LZtsrG8dSs0a6Z1NMYTHhOOz20ffG/7yiRyy4fCpoVpVKkRjSs2
3255
pnGlxjSq1Cj9jaaCguQaj9WrISFBJo6BA6FePZU8/qXAtjCeD93XV/7DOrvguJzY7uWlYXSKYjg7
3256
d8J//iOXFTVvrnU0OUMIwfWH1/G77YdvuC++t33xu+1HMbNiMnlUbETDig1pVLERFUtVfP6FcPas
3257
TB5r1shNnwYMkIda4wGohAHAn3/KTfX+avEL+PvDokUaRqcohrV7Nwwdmv9bGi/zbFDd97Yv/nf8
3258
8bvth1+4H4VNC+uTR8OKDXGp4EKVMlXQgawrv2YNrFsni3cNGCDXeBTgfctVwgA++kh+HiaFjpbz
3259
EceP1zA6RTG8Zy2N7dtVtf5nnrVEToefxv+OP/7h/pwOP01CcoI+ebhUcMHFuj41zodjun69HOis
3260
WVMmjr59C9wCQZUwgNdfh4kTodOMVvD11/DaaxpGpyjGsX273IBpx478NRBuaHdi7+iTx+k78rgb
3261
e5d65evRyLI+Xa4XpcnxK5TbdwJd/fqy5fHmm2BtrXXoRme0hBEREcH69es5evQo165dQ6fTUbVq
3262
Vdq0aUPfvn2x1vCX++83ffgwNHAWmNuZqxXeSr62dSu8846sPdWggdbR5B3R8dGcvXOWM3fOcPrO
3263
ac7ePcu18Eu8FW7JwAATGp6NINa5DmYD36LMwP/k29XlRkkYI0aM4MqVK7i7u+Pq6krFihURQhAe
3264
Ho63tze7d+/GwcGBxYsXZyv4rErzTV+/LkcFb9/WJCZFySkbN8p1Gvv2gZOT1tHkXYnJiQRGBnL2
3265
zlkCrvtQfN9hGhy9TLvgJC7VLEvoG02gR0/q1GhObcva2a+dlQsYJWGcO3eO+vXrv/TFGTnHWNJ8
3266
09u2wYIFcoRQUfK5Vavgv/+Vkz1q1dI6mvxDCMGt20FErv2D4h7bqewfgpd9EVbUTuBSi1pUt3Oh
3267
fvn61C9fn3rW9ahQskLW62dpQI1hPPPtt3LDlh9+0CYoRclhf/4JX34py6ZVq6Z1NPnUo0ewdStJ
3268
a1ahO3KUm41rcsTVmjXVHuP96CI6nY561vX0CaRe+Xo4WjnmzL7qWZDjCcPd3Z1du3Zl6YaGkuab
3269
HjhQ1pkZMkSboBRFAwsXyt2Ijx4FGyPuvKoA0dFyQcz69XDsGKJ9e6K7dsCvYQXOPLnC+YjznLt7
3270
jqCoICqhAtTGAAAgAElEQVSWqkg963o4WTvp/7dmuZqYmZpp+haMkjD8/f3TfIEQgi5dunDnzp0s
3271
3dBQ0ioNgqOj3IRejQQqBcx338HSpTJpWFlpHU0B8eCBTB7r1sGJE9C+vSxP0rUrScWLEnI/hAsR
3272
FzgfcZ6AiADOR5znxsMbOJR1wNHKESdrJ5ysnXC0csTewh5TE+PWwjJqaRBTU1PatGmT5os8PT2J
3273
i4vL0g0N5YUsmZAA5ubyG4DaaF4pgKZMkdNtDx2S/xSUHHT//j/J4+RJOc+/Tx/o2hVKldKfFvc0
3274
jktRl7gQcYELkRcIiAjgQsQFIp9EUqtcLRytHXG0cqSuVV0crRypZlHN4HutG6WF4ejoiIeHBzXT
3275
WE5fuXJlwsLCsnRDQ3nhTZ85A4MHQ0CAdkEpioaEgA8/BD8/uYVE8eJaR1RAPUse69fLlke7dnKB
3276
YNeuULp0mi+JSYjhYtRFAiICCIj8+4gI4F7cPWpb1qauVV3qWtaV/2tVN1stEqMkjPXr11OvXj1q
3277
1679ws88PDzopXHp8Bfe9F9/yaWwq1drF5SiaCwlRa4Gj4qS1W7VdhEae9ZttWEDHDsGbm6y5dGt
3278
W4aagY8SHnEp6hIBEQEERgUSGBlIQEQAdx/fpWa5mtSxrENdq7rUsaxDHas61ChbgyKFXt7DomZJ
3279
gZxfaGEBkydrF5Si5AJPn8pFyyVLwooVqmhzrhEdLaf+b9gg+w1bt5bJo0ePTC8SfJz4mEtRlwiM
3280
DORi1EV5RF7kWvQ1qpSpQh2rOjKJWNahtmVtalvWpkzRMkAOJoyuXbuyffv2LN3I0F540506wdix
3281
MnMrSgEXFyf/STg5wf/+pyp85zqPHsk6Lxs3yk3cmzWTyaNnz2zNWkhMTiTkfggXIy/qE8mlqEsE
3282
RQWxsvdKetTukXMJw8XFhdOnT2fpRob2wpveuBHatFFTRBTlb48eyY3oevWSazWUXCo2Vu5fvnGj
3283
XHTs4iKTR69eBiuMmCJSSBEpFDIplHMJ4+233+aPP/7I0o0MLTtvWlEKijt3oFUrWZhz1Cito1Fe
3284
KS5OzljYuFG2QOrUgd69ZR+jnZ1BbqHGMBRFSdeVK7LxPW+e/Luj5BGJibLuy8aNcgZD5cry/8De
3285
vWUiySKjJox9+/bRoUOHLF3cmFTCUJSMO30aOnaUywSerXNV8pCkJDh+XCaPTZugTBmZOHr3ll1Y
3286
mRikMlrCWL58OatWrWJ3LizmpxKGomTOwYNy24eDB1WF2zwtJQV8fGTi2LhRJpNnyaN5czB9+foM
3287
oySMGTNmsH//fnbu3EnxXLgCSCUMRcm8Vavg00/lYmRbW62jUbJNCLhwQSaPTZvg7l3o3l0mj3bt
3288
0lyIY5SEUaRIES5evIi9vX2WLmxsKmEoStb8+CMsWybXkakSIvnMlSvg4SGPwEBwd5dTdd3d9SVK
3289
svO3M90lPX/++SdvvvkmkZGRWQtcUZRc6eOP5ZfPXr1kCTYlH6leXU6JO3FCJoy2beGPP2QZ4z17
3290
sn35l45hHDx4kC+++IITJ05k+0aZFRoayjfffMPDhw9Zv379Cz9XLQxFybrkZFneqEQJWL5cLezL
3291
9x4+hEKFoEQJ486SOn/+PPXq1cvSxQ2hb9++KmEoihE8eSJbGh06wNdfax2NklOM0iX1THaTxdtv
3292
v0358uVfuM7u3bupXbs2NWrU4LvvvsvWPRRFybzixWHrVlmvc/FiraNR8oJCrzph9uzZqTKSTqej
3293
TJkyNGrUiAYZ2Kho+PDhvP/++wwdOlT/XHJyMuPGjWP//v3Y2NjQpEkTunfvjq+vL/7+/vz3v/+l
3294
koGWxCuKkj5ra1nkuU0bqFpVtjYUJT2vbGH4+fnx66+/cvv2bW7dusVvv/3Grl27eOeddzLUMmjd
3295
ujUWFhapnvP29sbBwQE7OzvMzMwYMGAAW7ZsYciQIcyZM4dKlSpx//59Ro0axZkzZ1QLRFGMqGZN
3296
uaBPbSejvMorWxhhYWH4+/tTsmRJAL766is6d+7MkSNHaNSoEZ988kmmb3rr1i0qV66sf2xra4uX
3297
l1eqc8qWLcuvv/760utMmzZN/9+ptmpVFCVT2rSBn36Se/x4ekL58lpHpBjKs61ZDeGVCSMyMpLC
3298
zy3+MDMz4+7duxQvXpyiRYtm6aY6A03JeD5hKIqSPW+9BcHBct3X4cNQrJjWESmG8O8v09OnT8/y
3299
tV6ZMAYPHkzTpk3p2bMnQgi2bdvGoEGDePz4MXXr1s3STW1sbFJt8RoWFoatWnaqKJqbNk0mjeHD
3300
5WC4mm6rPC9D1Wp9fHw4efIkAC1btqRx48aZusm1a9fo1q0b58+fByApKYlatWpx4MABKlWqhKur
3301
K6tXr6ZOJiow6nQ6pk6dqrqiFMXA4uPhtddksULViM8/nnVNTZ8+3bjlzY8dO0ZwcDBvv/02kZGR
3302
xMbGUq1atQzdYODAgRw5coR79+5hbW3NV199xfDhw9m1axcffvghycnJjBgxgs8++yxzgat1GIpi
3303
NHfvQtOmMGuWLFio5B9GXbg3bdo0/Pz8CAoK4vLly9y6dYt+/fppsvr7eSphKIpxnTsHr78ut6Fu
3304
2lTraBRDMerCPQ8PD7Zs2UKJEiUAOf4QExOTpZsZ2rRp0ww2+q8oSmr168OSJbLw6c2bWkejZNfh
3305
w4ezPVHolS0MV1dXvL299ft5P378mObNm3Pu3Lls3Ti7VAtDUXLGrFmwYQMcPSpXhyt5m1FbGH37
3306
9uW9994jOjqa33//nfbt2zNy5Mgs3UxRlLznk0+gdm0YMUJuv6AUXBka9N67dy979+4FoGPHjrli
3307
y1bVwlCUnBMXJytl9+gBn3+udTRKdhh10Du3UtNqFSVn3b4Nrq7wyy/QrZvW0SiZZdRptSVLlkx3
3308
RbZOp+PRo0dZuqGhqBaGouQ8Ly+ZLI4cgUwsm1Jykez87Ux3pXdsbCwAU6ZMoVKlSrz11lsArFy5
3309
ktu3b2fpZoqi5G1Nm8J338ldP7281BavBc0ru6Tq16//woyotJ7LaaqFoSjaGT8eQkLkGg1TU62j
3310
UTLDqLOkSpQowYoVK0hOTiY5OZmVK1fqK9dqTa3DUBRtzJ4tB8K//FLrSJSMypF1GKGhoXzwwQep
3311
akn9/PPP2NnZZevG2aVaGIqirchIaNxYlkV/802to1EyqsDOksqjoStKvuHnB506yXLojo5aR6Nk
3312
hFG6pKZNm8bdu3fTfWF4eDhTp07N0k0VRckfGjWCH36AXr0gOlrraBRjS3eWVOPGjRkwYACJiYk0
3313
bNiQihUrIoTgzp07+Pv7U6RIESZOnJiTsSqKkgv95z/g6wtDh8LmzWDyypFRJa96ZZdUWFgYJ06c
3314
4MaNGwBUrVqVli1bar7hkVq4pyi5R2Ki3EOjc2e1Ejy3yrH9MHIjNYahKLnL7dtyEHzpUnjjDa2j
3315
UdJj1Gm1iqIoGVGpktzWdehQuHZN62gUY1AJQ1EUg2nbFiZNgj595FavSv7y0oSRnJzMnDlzcioW
3316
RVHygY8+gmrV4MMPtY5EMbSXJgxTU1NWrVqVU7EoipIP6HRyp76DB+Gvv7SORjGkdKfVPtOqVSvG
3317
jRtH//799du0AjRs2NCogWXEtGnT1CwpRcmFSpeGjRuhXTtwcQEnJ60jUp7NksqOV86ScnNzS7PM
3318
+aFDh7J14+xSs6QUJfdbvhy+/RZ8fKBUKa2jUUCVBlEUJRd7912IiYFVq2R3laItoySM2bNn6y+e
3319
lgkTJmTphoaiEoai5A1xcdC8Obz3HowerXU0ilE2UIqJiUGn0xEUFISPjw/du3dHCMH27dtxdXXN
3320
crCKohQsxYrB+vXQsqXcgCkXDH8qWfTKLqnWrVuzc+dOSv3dARkTE0Pnzp05duxYjgSYHtXCUJS8
3321
Zd06+Owz8PeHMmW0jqbgMupK74iICMzMzPSPzczMiIiIyNLNFEUpuPr1k6XQR4wA9V0vb3rltNqh
3322
Q4fi6upK7969EUKwefNmhg0blhOxKYqSz8yeDS1awMKFMHas1tEomZWhWVJ+fn4cO3YMnU5HmzZt
3323
cHFxyYnYXkpVq1WUvCk4WCaNvXvlGg0lZ6hqtXkzdEUp8NasgS++kOMZan1GzlLrMBRFyXPefRdi
3324
Y2HlSrU+Iyep8uaKouQ5P/8M587J/TOUvCHdhNGxY0fmzJnDpUuXcjIeRVEKiGLFYO1aWQ5d/ZnJ
3325
G9LtkgoPD2f37t3s2bOHoKAgmjZtiru7O6+//nqqIoRaUV1SipI//P67nDXl6QlFi2odTf5n9DGM
3326
5ORkvLy82LVrFwcPHqRo0aJ07NiRSZMmZemmhqAShqLkD0JA//5QoQLMm6d1NPlfjg96R0ZGsnfv
3327
XgYPHpylmxqCShiKkn9ER8sptj//DN27ax1N/qZmSSmKkuedPAm9e8uptpUqaR1N/qVmSSmKkue1
3328
aAFjxsDQoZCSonU0SlpUwlAUJdeYPBkSEmQJESX3STdheHp64uzsTIkSJWjevDmBgYE5GVeGTJs2
3329
7YUtB8uWLYtOp1OHOox2lC1bVpsPfAFQqBCsWAE//AC+vlpHk78cPnyYadOmZesa6Y5hNGrUiFmz
3330
ZtG6dWu2bdvG4sWL2bNnT7ZuZkg6Xdr9cOk9ryiGoj5jxrduHUyZIsczSpbUOpr8JTuf33QThouL
3331
C6dPn073sdZUwlC0oj5jOeM//4HCheU6DcVwsvP5Tbe8+cOHD9m0aZP+ws8/1ul09O7dO2vRKoqi
3332
ZMC8eXKq7ebN0LOn1tEo8JIWxn/+8x90un8qgj1LFM/8+eefxo/uJVQLQ9GK+ozlHDXV1vCM0iWV
3333
26mEoWhFfcZy1tSpsmzIrl1gouZ1ZptREsbs2bNTtSj+bcKECVm6oaGohKFoRX3GclZSErRqBYMH
3334
w/vvax1N3meUMYyYmBh0Oh1BQUH4+PjQvXt3hBBs374dV1fXLAerKIqSGYUKwV9/yYV9r78Odepo
3335
HVHB9couqdatW7Nz505K/b0tVkxMDJ07d+bYsWM5EmB6VAvD8EJDQ6lWrZrWYaQSHh5OmTJlKF68
3336
uNah6KnPmDZ++03OmDp1Ss6eUrImO5/fV/YIRkREYGZmpn9sZmZGRERElm6m5F5Xr17F09NT6zBe
3337
YGVlxffff691GEou8O67cuD7q6+0jqTgSrdL6pmhQ4fi6upK7969EUKwefNmhg0blhOx5Wtr1qxh
3338
zpw5BAQEUKJECapVq8awYcMYPXq0JvH89ttvfPfdd0a59ubNmwkMDMTExAQbGxuGDBmS5nmrVq0i
3339
PDwcb29vevXqxYABAyhUqBBdunRh+fLlDB061CjxKXmDTgeLF0ODBtC5s+yiUnKYyABfX18xZ84c
3340
MXfuXOHv75+RlxhdeqFn8C1p6scffxTly5cXGzduFLGxsUIIIU6fPi0GDx4sEhIScjyeM2fOiHnz
3341
5hnl2tHR0aJhw4b6x82aNRORkZEvnBccHKyPITIyUpibm4urV6/qfz5kyBCjxJcVeeEzlp95eAhR
3342
vboQMTFaR5I3Zefzm2c/+Xk1YURHR4sSJUqITZs2vfS8mTNniurVq4tSpUqJunXrCg8PD/3PdDqd
3343
uHLliv7xsGHDxJQpU/SPZ82aJWxsbESpUqVErVq1xIEDB176/IwZM8SFCxcM+Tb1tm7dKt566y39
3344
4/fee0+sW7fuhfM2b94sbG1t9Y8bN24s1q9fr388YcIEERwcbJQYMyu3f8YKgmHDhBg9Wuso8qbs
3345
fH5f2SWlGNapU6dISEigR48eLz3PwcGB48ePU6FCBdatW8dbb73FlStXKF++/AvnPiuKBxAUFMSC
3346
BQvw9fWlQoUK3Lhxg6SkpHSfB/Dx8WHy5MmZeh9Xr15l0aJF6f68WbNm9OjRg5s3b2Jubq5/3tzc
3347
nODg4BfO79y5M7t27QLkItHw8HAcHBz0P3d2dsbPzy/Vc0rB9fPPUL8+7NkDHTtqHU3BkWsTxpYt
3348
W9ixYwePHj1ixIgRdOjQwWDXfsnykkzJykSDqKgoLC0tMXluBVKLFi24ePEiCQkJ7Nmzh9atW9On
3349
Tx/9z/v168fMmTPx9vamW7du6cQigzE1NSUhIYGAgADKlStHlSpVAAgJCUnzeYAnT568sObm8uXL
3350
TJkyhcjISHx9fXFzc6NLly6MGjUKAHt7e2bOnPnK9xsdHU3R5zZqLly4MLGxsS+cZ2ZmhpOTEwA7
3351
duygcePGNGjQQP9zCwsLLl++/Mr7KQVDmTLw559y74xz50AVEM4ZuXbdZI8ePfj999/59ddfWbt2
3352
rUGvLYRhjqwoV64cUVFRpDy3Q8zJkyd58OAB5cqV0//hX758OS4uLlhYWGBhYcGFCxeIiop65fUd
3353
HByYO3cu06ZNo3z58gwcOFD/bT2t50Hu2f68+/fvM2rUKJYvX86hQ4do3749K1as0CeLzChVqlSq
3354
KXxxcXEvLQ8eHR3N0qVLWbFiRarnixUrRmJiYqbvr+Rf7drBm2/C2LFaR1JwGD1hvP3225QvX556
3355
9eqlen737t3Url2bGjVqvHR2zowZMxg3bpyxw8wxzZs3p0iRImzevDndc65fv867777LggULuH//
3356
Pg8ePMDJyUn/h7d48eI8efJEf354eHiqFsLAgQM5duwY169fR6fT8cknn7z0+UKFUjc0FyxYwNix
3357
Y/Utg4SEhBfWQVy9epXPPvss3WPLli0AVK9ePVWii4qKwsbGJs33LYRg1qxZLF68mJIlS3L9+nX9
3358
zx4+fKj2oVBeMHOmrDO1YYPWkRQMRu+SGj58OO+//36qKZHJycmMGzeO/fv3Y2NjQ5MmTejevTu+
3359
vr74+/vz3//+l4oVK/Lpp5/i7u6eqmsirzM3N2fq1KmMGTMGIQRvvPEGJUqU4Ny5czx+/BiAx48f
3360
o9PpsLS0JCUlheXLl3PhwgX9NRo0aMDKlSuZMWMG+/bt4+jRo/rV95cvX+bmzZu0bNmSIkWKULRo
3361
UYQQ6T4PUKFCBWJjYyn598YDMTEx1K1bF4CAgAAcHR1TrcWBjHdJtWnThkmTJukf+/v7678gXLly
3362
BXt7e32ymz9/Pn379iU+Ph5vb2/i4uKoWrUqIJNiHbXEV/mX4sVh2TJZzbZNG7C21jqifC77Y+6v
3363
FhoaKpycnPSPT548KTp27Kh/PHPmTDFz5sxUr/n5559Fo0aNxKhRo8Svv/76wjXTCz2H3lK2rVy5
3364
Uri6uorixYsLKysr0bRpU7Fo0SKRmJgohBDi888/F2XLlhWWlpZiwoQJws3NTSxZskQIIac5Ozo6
3365
ilKlSokhQ4aIQYMGiS+++EIIIcS5c+eEq6urKFWqlChbtqzo1q2bCA8PT/d5IYRYsmSJfsaUEEJc
3366
vXpVzJ07V2zYsEHMnTtXPH36NFvvdfny5eLrr78W06dPFytWrNA/7+Liop+mfezYMWFiYiJ0Op3Q
3367
6XTCxMRE3Lx5U3/uiBEjRFxcXLbiMJS88hkrSD75RIhevYRISdE6ktwvO5/fHKlWe+3aNbp168b5
3368
8+cB2LBhA3v27NHPslmxYgVeXl7Mnz8/w9fU6XRMnTpV/9jNzQ03NzdVtiELoqOj+fHHH5kxY4bW
3369
oaQpPj6eyZMn89NPP2kdCqBKg+RGCQnQqBF89pksUqj84/Dhw6m2sp4+fbrhiw8a08uq4GZGdven
3370
VSRzc3MsLS31M7hymzVr1vDee+9pHYaSixUpAsuXQ6dO8Nprau+M5z37Mv3M9OnTs3wtTWZJ2djY
3371
EBYWpn8cFhaGra2tFqEof/vggw/w8PDQOowXhIWFYWFhQa1atbQORcnlGjaE0aPhvfeyPotReTlN
3372
Ekbjxo0JDg7m2rVrJCYmsnbtWrp3757p60ybNi1VU0vJOp1OxzvvvKN1GC+oXLnyKxc5Ksozn38O
3373
N27IcuhKaocPH852r4zRxzAGDhzIkSNHuHfvHtbW1nz11VcMHz6cXbt28eGHH5KcnMyIESP47LPP
3374
MnVdVd5c0Yr6jOVup0/L1d9nzqiuqbSoLVoz8LyiGIr6jOV+U6fK9RlbtxquskN+YdT9MHIz1SWl
3375
KEpaPv8cwsJU19Tz8kSXlLGoFoaiFfUZyxtOn5azps6cgYoVtY4m9yiwLQxFUZT0uLjAO+/AmDFq
3376
1pShqIShKEq+9cUXEBQE69ZpHUn+kKcThhrDUBTlZYoUkWXQP/gAIiO1jkZbagxDjWEoGlCfsbxn
3377
4kS4eRPWrNE6Eu2pMQxFUZSX+Oor8POT02yVrFMJowAIDQ3VOoQ8ITw8PNU+I0r+Ubw4LFokN1t6
3378
+FDraPKuPJ0w8uMYhpOTE0ePHjXY9a5evYqnp6fBrpefWVlZ8f3332sdhmIkbm7QpQs8tz1LgWKI
3379
MYw8W9g/vdDzwluqWrWq2L9/v/7x6tWrhYWFhTh69KjB7zVp0iSDX/MZDw8P8c0334iZM2eK5cuX
3380
p3ve6dOnxccff2y0OLJyT3t7e1G4cGFhbW0tli1bpn/e29s71eO05IXPmJK26GghbG2FOHhQ60i0
3381
k53PryblzQs6nU6nL/G+bNkyPv74Y3bu3EmzZs0Mep+zZ88arQrww4cP+frrr/Hz8wPk1rPu7u4v
3382
lEf/6aefOH78OGXKlDFKHGnJyD0//fRTOnbsSKVKlVJtUdukSRPmz5+faodIJf8oUwYWLpTrM86d
3383
k11VSsbl6S6pvEwIwW+//cbEiRPZu3evPlnY2dlx4MAB/Xl2dnbMnj0bZ2dnzM3NGTBgAAkJCYDc
3384
7tTFxYXSpUvTr18/+vfvzxdffKF/7fbt22nXrp1R4j969Kh+G1cAZ2dnDh069MJ5EyZMyPFqsxm5
3385
Z+HChalSpcoL+5mD7JoKCQkxVniKxrp1gyZNIBvbQhRYqoWhkYULF3LixAkOHjxIvXr19M8/3/p4
3386
9nj9+vXs2bOHIkWK0LJlS5YuXcrw4cPp1asXEydOZMyYMWzdupUBAwbwySef6F/r4+PD5MmTMxXX
3387
1atX9TshpqVZs2b06NGDmzdvYm5urn/e3Nyc4ODgNF8jsjkFNaMxZeaePj4+JCQk8OjRI2rWrJmq
3388
vL6zszN+fn44ODhkK24l95o7F+rXhwED5IpwJWPydMKYNm3aC7tJZYRuumHKV4qpWftDKIRg//79
3389
tGvXDicnp1eeP378eCpUqABAt27dOHPmDJ6eniQnJ/P+++8D0KtXL1xdXVO97smTJy/sbnj58mWm
3390
TJlCZGQkvr6+uLm50aVLF0aNGgWAvb09M2fOfGVM0dHRFC1aVP+4cOHCxMbGpnnuq3ZYfPToESNH
3391
jsTf359evXrxww8/EBYWRlhYGC1atMhwTJm5Z/v27enVqxcADRo0oE2bNvoEaGFhweXLlzN1PyVv
3392
KV8evvsORo4ELy9Io6GZ7/x7q9asyNO/pqyO+Gf1D72h6HQ6fv31V77++mtGjhzJkiVLXnr+s2QB
3393
ULx4cW7fvk14eDg2NjapzqtcuXKqb9bJycmpfn7//n1GjRrFzp07KVq0KD179mTZsmVZGl8oVaoU
3394
9+7d0z+Oi4ujfPnyaZ77qm/7y5cvZ/78+ZQvX57Nmzdz8uRJ7ty5Q+/evTMdV0bv+XyLxMLCgsOH
3395
D9OzZ08AihUrRmJiYpbvreQNw4bBihWytTFxotbRGN+zL9fZ2aI1TyeMvKx8+fIcOHCAtm3bMmbM
3396
GBYuXJip11esWJFbt26leu7GjRupulH+3T+/YMECxo4dq28ZJCQkUPxfo34Z7f6pXr06vr6++uej
3397
oqJo2LBhmq951bf90aNHY2pqCkDPnj2ZNWtWqlZjVrqkXnbPFStWsHXrVtb9XWDo8ePHqX5XDx8+
3398
pGzZsi+NWcn7dDr47Tdo2hR69YLq1bWOKPdTCUNDFStW1CeNCRMm8NNPP73yNc++OTdv3hxTU1P+
3399
97//MWrUKHbs2IGPj0+qQe4KFSoQGxtLyZIlAYiJidEPVAcEBODo6IiZmVmq62e0+6dNmzZMem5C
3400
u7+/P9999x0AV65cwd7eXv9HO61v+8HBwVSvXh0TExN9snjm2rVrqWaMZaVLKq17PovLzs5O3wX3
3401
5MkTIiMjU/3ewsPDqVOnTqbup+RN1avLdRmjR8OePWqzpVdRs6Q0VrlyZQ4ePMiGDRuYPHnyK7+N
3402
PxsUNzMzY9OmTSxZsgQLCwtWrlxJ165dKVy4sP7ctm3b4u3trX88evRo9u7dy8aNG9m/fz+zZs3K
3403
ctwlSpRg0qRJzJgxg6+++opJkyZhbW0NQN++fTlz5gwA//vf//jjjz84fPgw06dP59GjRwB0796d
3404
vXv3pnntJk2aZDmul93zWVytWrUiPDycuXPn8vnnn7NmzZpULa0zZ87QsmXLbMWg5B0ffQQREbBy
3405
pdaR5H6q+GA+0rRpU8aMGcOwYcMAOTD9448/MmPGDI0je1FiYiJeXl60bt061fO+vr5ERETQuXNn
3406
TeKKj49n8uTJL23tFeTPWH7l7Q3du0NAAJQrp3U0xlVgiw/mx9IgmXH06FHu3LlDUlISy5Yt48KF
3407
C3Tq1En/c3NzcywtLYmKitIwyrR5eHjQokWLF54PDAykbdu2GkQkrVmzhvfee0+z+yvacHWF/v3h
3408
v//VOhLjUeXNC3gLY9GiRXzxxRc8fvyY6tWrM3PmTNzd3VOdI4Rg8eLFvPPOOxpFmXeEhYXh7+//
3409
ykV/BekzVpDExICjIyxbBq+9pnU0xpOdz69KGIqSSeozln9t3Sqn2J47B88tM8pXCmyXlKIoiiF1
3410
7y5bGdmYD5KvqRaGomSS+ozlb2FhslzIiRNQq5bW0RieamEoiqIYSOXKMGWKXJuhvhekphKGoijK
3411
v4wbB9HR8NdfWkeSu6guKUXJJPUZKxh8faFr1/y3NqPAdkkV9HUYiqIYT+PG0LcvfPqp1pEYhlqH
3412
oVoYigbUZ6zgePgQ6taF9eshjXWmeVKBbWEoiqIYU5ky8OOPcgA8KUnraLSnEoaiKMpLDBgAVlYw
3413
b57WkWhPJYwCIDQ0VOsQNBceHs6TJ0+0DkPJg3Q6WLgQvv0Wbt7UOhptqYSRyzg5OXH06FGDXe/q
3414
1bWo6wgAABD1SURBVKt4enoa7Hp5lZWVFd9//73WYSh5VM2aMHasLIVekKlBbw3Y2dmxZMkS2rdv
3415
D8gKqWPGjGHLli0vlPvOrk8++US/sZGhbd68mcDAQExMTLCxsWHIkCEvnLNq1SrCw8Px9vamV69e
3416
DBgwwCixPG/Lli3ExsZy5coVLC0tGTNmDAA+Pj5cvHiRoUOHZuv6eeEzphheXBw4OcEvv8Abb2gd
3417
TdZl6/Mr8qj0Qs8Lb8nOzk4cOHBACCHE0qVLRbly5cSpU6cMfp8zZ86IefPmGfy6QggRHR0tGjZs
3418
qH/crFkzERkZmeqc4OBg/f0jIyOFubm5uHr1qlHieebBgweiSJEiIi4uTqSkpIiyZcuKa9eu6X8+
3419
ZMiQbN8jL3zGFOPYvl2IGjWEiI/XOpKsy87nV3VJaUQIwW+//cbEiRPZu3evfktSOzs7Dhw4oD/P
3420
zs6O2bNn4+zsjLm5OQMGDCAhIQGQ26K6uLhQunRp+vXrR//+/fniiy/0r92+fXuqrUcN6ejRo/rt
3421
XgGcnZ05dOhQqnMCAgL03UCWlpY4ODjg5+dnlHieMTc3x8/Pj6JFi6LT6UhKSkr1bcrKyoqQkBCj
3422
xqDkX126yGm2P/ygdSTaUHt6a2ThwoWcOHGCgwcPUq9ePf3zz7Zgff7x+vXr2bNnD0WKFKFly5Ys
3423
XbqU4cOH06tXLyZOnMiYMWPYunUrAwYM4JNPPtG/1sfHh8mTJ2cqrqtXr7Jo0aJ0f96sWTN69OjB
3424
zZs3MTc31z9vbm5OcHBwqnM7d+7Mrl27AJkgw8PDcXBwyFQ8mYnpGUdHRwCOHz+Om5sbdnZ2+p85
3425
Ozvj5+eXpTgUBeDnn6FRIxg8GKpV0zqanFUwE4ahdnrPYj+gEIL9+/fTrl07nJycXnn++PHjqVCh
3426
AgDdunXjzJkzeHp6kpyczPvvvw9Ar169cHV1TfW6J0+evLBH+OXLl5kyZQqRkZH4+vri5uZGly5d
3427
GDVqFAD29vbMnDnzlTFFR0dT9LkNAwoXLkxsbGyqc8zMzPTvb8eOHTRu3JgGDRq8cK1Hjx4xcuRI
3428
/P396dWrFz/88ANhYWGEhYXRokWLDMf0vE2bNrF+/Xpmz56d6nkLCwsuX76cqWspyvOqVoUJE2D8
3429
eNi2Tetoclae7pLKcmkQIQxzZJFOp+PXX38lKCiIkSNHvvL8Z8kCoHjx4sTGxhIeHo6NjU2q8ypX
3430
rpyq+yU5OTnVz+/fv8+oUaNYvnw5hw4don379qxYsUKfLDKjVKlSqe4VFxdH2bJl0zw3OjqapUuX
3431
smLFijR/vnz5cubPn09ISAgtW7bk5MmT+Pj4pLmFa0b17t2bRYsW4e7uzrVr1/TPFytWjMTExCxf
3432
V1EAPv4YgoJg+3atI8k4Q5QGydMtjOy+eS2VL1+eAwcO0LZtW8aMGcPChQsz9fqKFSty69atVM/d
3433
uHEjVVdLoUKp/+9dsGABY8eO1bcMEhISKF68eKpzMtr9U716dXx9ffXPR0VF0bBhwxfOF0Iwa9Ys
3434
Fi9eTMmSJbl+/TpVq1ZNdc7o0aMxNTUFoGfPnsyaNQs3N7dMxwSyJfPtt99y4sQJSpYsibW1NRs2
3435
bGDixIkAPHz4MN3EpigZVaQIzJ8PY8bA66/njd353NzccHNzY/r06Vm+Rp5OGHldxYoV9UljwoQJ
3436
/PTTT698zbNv9c2bN8fU1JT//e9/jBo1ih07duDj45NqkLtChQrExsZSsmRJAGJiYvQD1QEBATg6
3437
OmJmZpbq+hnt/mnTpg2TJk3SP/b399dP371y5Qr29vbodDrmz59P3759iY+Px9vbm7i4OKpWrUpw
3438
cDDVq1fHxMREnyyeuXbtmn4SQGZiAjA1NdUnGyEEYWFh1K9fX//z8PBw6tSpk6FrKcrLdOwIzs7w
3439
/ffw5ZdaR5MzVMLQWOXKlTl48CBt2rTRz+x5mWeD4mZmZmzatImRI0fy2Wef4e7uTteuXSlcuLD+
3440
3LZt2+Lt7a1PIqNHj2br1q0EBgZy8+ZNZmVjH8oSJUowadIkZsyYQUpKCpMmTcLa2hqAvn37smTJ
3441
Eh4/fsxHH32kT3I6nY4bN24A0L17d+bMmUOnTp1euHaTJk2yHFenTp24evUq8+fP5/r163z++ee8
3442
8dyk+TNnzmSoG1BRMmLOHDkAPmRIwRgAVwv38pGmTZsyZswYhg0bBsixgx9//JEZM2ZoHNmLEhMT
3443
8fLyemGhoq+vLxEREXTu3Nng94yPj2fy5MkZasm9TEH+jCkv+uYb8PGBzZu1jiRjVLXaAuro0aPc
3444
uXOHpKQkli1bxoULF1J9Yzc3N8fS0pKoqCgNo0ybh4dHmoPagYGBtG3b1ij3XLNmDe+9955Rrq0U
3445
XBMnyk2Wdu/WOhLjUwkjDwsKCqJBgwZYWFgwZ84cNmzYQPny5VOd88EHH+Dh4aFRhOnr37//C2MX
3446
AEOHDqVEiRIGv19YWBgWFhbUqlXL4NdWCrYiRWDuXPjgA8jvE/BUl5SiZJL6jClp6dYNWreG5+aC
3447
5ErZ+fyqhKEomaQ+Y0paQkKgWTM4dw4qVdI6mvSpMQxFURSNOTjAe+/l/hZGdqgWhqJkkvqMKel5
3448
/Bjq1IGVK2X3VG6kWhiKoii5QIkSspLt+PHwr8o8+YJKGIqiKAbUrx+ULg2LF2sdieHluy6psmXL
3449
8uDBAw0iUgoKCwsL7t+/r3UYSi525owsHXLpElhYaB1NavlyltSlS5f4+eefuXfvHh07dmTEiBGp
3450
fq76kRVFyc1GjZJrNH7+WetIUsuXYxi1a9fml19+Yc2aNezZs0frcHK1LJV4z6fU7+If6nfxDy1+
3451
FzP+3969hUTVrnEA/+cxEYmtdvAwWTni2fHCNI8hYZqCEEnqRZjV0NenA3knxocWu5DutnUTURZG
3452
VlpkYQ5SmOEhRQ3jU0kzNQ8Vmoph6Iz67At3k/pVrqZZa03u5wfrYs2sWfOsh/F9nHnX+77/Bm7e
3453
BP7+W/K3Fo3oBePIkSPYvHnzslXlAECr1cLHxwdeXl6GWU5XevjwIZKSkpCWliZ2mL81bhi+4lx8
3454
xbn4So5cODsDf/0FnDz5S8vnmBXRC0ZmZia0KyZZmZ+fR3Z2NrRaLTo7O1FaWoquri6UlJQgJycH
3455
IyMjABZXl6uqqsL169fFDpMxxkzuzz+Bd++Aigq5IzEN0ac3j46OXrbiGQA0NzdDqVQa1lpOS0tD
3456
RUUFcnNzcejQIQBAbW0t7t27h5mZGcTGxoodJmOMmZyV1eI8U3/8Aezbt9in8VsjCfT19VFAQIBh
3457
v6ysjI4dO2bYLykpoezs7J86JwDeeOONN96M2IwlywJKqy0SJAStlR8FGWPsNyHLXVJubm4YHBw0
3458
7A8ODsLd3V2OUBhjjAkkS8EICQlBT08P+vv7odPpcPv2bSQnJ8sRCmOMMYFELxjp6emIiIhAd3c3
3459
FAoFiouLYWVlhYsXLyI+Ph5+fn5ITU2Fr6+v2KEwxhj7FUb3fkioqqqKvL29SalUUmFh4TeP0Wg0
3460
pFQqKSgoiNra2iSOUDqr5eLGjRsUFBREgYGBFBERQe3t7TJEKT4hnwkioubmZrK0tKS7d+9KGJ20
3461
hOSipqaGgoODyd/fn3bv3i1tgBJaLRejo6MUHx9PKpWK/P39qbi4WPogJZKZmUmbNm1adsPRSj/b
3462
bpp9wZibmyNPT0/q6+sjnU5HKpWKOjs7lx1TWVlJ+/btIyKi58+fU1hYmByhik5ILhoaGmhycpKI
3463
Fv941mIuhOThy3GxsbGUlJRE5eXlMkQqPiG5mJiYID8/PxocHCSixUZzLRKSi/z8fMrNzSWixTw4
3464
OjqSXq+XI1zRPXv2jNra2r5bMIxpN812apAvlo7ZsLa2NozZWOrBgwfIyMgAAISFhWFychIfPnyQ
3465
I1xRCclFeHg4NmzYAGAxF0NDQ3KEKioheQCACxcuICUlBRs3bpQhSmkIycXNmzdx4MABw40lzs7O
3466
coQqOiG5cHFxwdTUFABgamoKTk5OsLKS5WZR0UVHR+NfP5j50Jh20+wLxvDwMBQKhWHf3d0dw8PD
3467
qx6zFhtKIblY6sqVK0hMTJQiNEkJ/UxUVFTgxIkTAExzK7c5EpKLnp4ejI+PIzY2FiEhISgpKZE6
3468
TEkIyYVarUZHRwdcXV2hUqnwH3ObGVBCxrSbZl9ahf6h04pxGWuxgfiZa6qpqcHVq1dRX18vYkTy
3469
EJKHkydPorCw0DAz58rPx1ohJBd6vR5tbW148uQJPn/+jPDwcOzatQteXl4SRCgdIbk4d+4cgoOD
3470
8fTpU/T29iIuLg7t7e1wcHCQIELz87PtptkXDCFjNlYeMzQ0BDc3N8lilIrQ8SsvX76EWq2GVqv9
3471
4VfS35WQPLS2thomrRwbG0NVVRWsra3X3O3bQnKhUCjg7OwMOzs72NnZISYmBu3t7WuuYAjJRUND
3472
A06dOgUA8PT0xPbt2/Hq1SuEhIRIGqs5MKrdNFkPi0j0ej3t2LGD+vr6aHZ2dtVO78bGxjXZ0Usk
3473
LBcDAwPk6elJjY2NMkUpPiF5WOrw4cNr9i4pIbno6uqiPXv20NzcHE1PT1NAQAB1dHTIFLF4hOQi
3474
JyeHCgoKiIjo/fv35ObmRh8/fpQjXEmsnJZpKWPaTbP/hrF0zMb8/DyOHj0KX19fXLp0CQBw/Phx
3475
JCYm4tGjR1AqlbC3t0dxcbHMUYtDSC7OnDmDiYkJw2/31tbWaG5uljNskxOSh/8XQnLh4+ODhIQE
3476
BAUFwcLCAmq1Gn5+fjJHbnpCcpGXl4fMzEyoVCosLCzg/PnzcHR0lDlycaSnp6O2thZjY2NQKBQ4
3477
ffo09Ho9AOPbTbNdcY8xxph5Mfu7pBhjjJkHLhiMMcYE4YLBGGNMEC4YjDHGBOGCwZiRUlNT0dvb
3478
+4/Hr127Bo1GY9Q5Z2dnERMTg4WFhV8NjzGT44LB2CroGyPFX79+jenpaXh6epr0vWxtbREdHY37
3479
9++b9LyMmQIXDMa+ob+/H97e3sjIyEBgYOA/5ti5devWslHjxcXF8Pb2RlhYGBoaGgyPj46OIiUl
3480
BaGhoQgNDTU8Nzo6iri4OAQEBECtVmPbtm0YHx8HACQnJ6O0tFSCq2TsJ5lsSCFja0hfXx9ZWFhQ
3481
U1PTN59PSEig1tZWIiIaGRmhrVu30tjYGOl0OoqMjCSNRkNEROnp6VRXV0dEi6PwfX19iYgoKyvL
3482
sF6DVquldevWGUYcz8zMkKurq6jXx5gxzH6kN2Ny8fDwQGho6DefGxgYgIuLCwCgqakJsbGxcHJy
3483
ArDYt9Hd3Q0AePz4Mbq6ugyv+/TpE6anp1FfX2/42Sk+Pn7ZnF+2trZYWFjAzMwM1q9fL8q1MWYM
3484
LhiMfYe9vf0Pn6f/9Wt8mRF36eNfZv0kIjQ1NcHGxua7r//eudfijMvs98Z9GIwZwcPDA+/evQMA
3485
hIaGora2FuPj49Dr9SgrKzMct3fvXhQVFRn229vbAQCRkZG4c+cOAKC6uhoTExOGY2ZnZ2FpaQlb
3486
W1spLoUxwbhgMPYdP/oPPyoqCi0tLQAWV3ErKChAeHg4oqKi4O/vbziuqKgILS0tUKlU8Pf3N0yE
3487
l5+fj+rqagQGBqK8vBxbtmwxrMnw4sULhIeHi3hljBmHJx9kzAhv3ryBRqNBZWWlUa/X6XSwtLSE
3488
paUlGhsbkZWVhba2NgBAXl4edu7cif3795syZMZ+GfdhMGaEHTt2wMHBAb29vUaNxXj79i0OHjyI
3489
hYUF2NjY4PLlywAWf46qq6vD2bNnTR0yY7+Mv2EwxhgThPswGGOMCcIFgzHGmCBcMBhjjAnCBYMx
3490
xpggXDAYY4wJwgWDMcaYIP8FsriuL0Zd8AcAAAAASUVORK5CYII=
3491
"></img>
3492
</div>
3493
</div>
3494
</div>
3495
</div>
3496
</div>
3497
<div class="text_cell_render border-box-sizing rendered_html">
3498
<h2>
3499
  Gammalib
3500
</h2>
3501
</div>
3502
<div class="text_cell_render border-box-sizing rendered_html">
3503
<p>We want to use gammalib for most of our simulations / fitting.</p>
3504
<p>At the moment the Fermi LAT PSF is fully implemented in gammalib, for HESS there is the <code>GCTAPsf2D</code> which implements a triple-Gauss model:
3505
http://gammalib.sourceforge.net/doxygen/classGCTAPsf2D.html</p>
3506
</div>
3507
<div class="cell border-box-sizing code_cell vbox">
3508
<div class="input hbox">
3509
<div class="prompt input_prompt">In&nbsp;[120]:</div>
3510
<div class="input_area box-flex1">
3511
<div class="highlight"><pre><span class="kn">import</span> <span class="nn">gammalib</span>
3512
</pre></div>
3513

    
3514
</div>
3515
</div>
3516
</div>
3517
<div class="cell border-box-sizing code_cell vbox">
3518
<div class="input hbox">
3519
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
3520
<div class="input_area box-flex1">
3521
<div class="highlight"><pre><span class="c"># As far as I can see the PSF has to be initialized from a FITS file, which is not nice for simulations / checks ...</span>
3522
<span class="c"># This is an exmple PSF, I think for HD / Hillas and some Crab run, but I&#39;m not sure ...</span>
3523
<span class="n">psf</span> <span class="o">=</span> <span class="n">gammalib</span><span class="o">.</span><span class="n">GCTAPsf2D</span><span class="p">(</span><span class="s">&#39;/Users/deil/code/gammalib/inst/cta/test/caldb/dc1/psf.fits&#39;</span><span class="p">)</span>
3524
</pre></div>
3525

    
3526
</div>
3527
</div>
3528
</div>
3529
<div class="cell border-box-sizing code_cell vbox">
3530
<div class="input hbox">
3531
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
3532
<div class="input_area box-flex1">
3533
<div class="highlight"><pre><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">degrees</span><span class="p">(</span><span class="n">psf</span><span class="o">.</span><span class="n">delta_max</span><span class="p">(</span><span class="n">logE</span><span class="p">))</span> <span class="k">for</span> <span class="n">logE</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mf">1.1</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)]</span>
3534
</pre></div>
3535

    
3536
</div>
3537
</div>
3538
</div>
3539
<div class="cell border-box-sizing code_cell vbox">
3540
<div class="input hbox">
3541
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
3542
<div class="input_area box-flex1">
3543
<div class="highlight"><pre><span class="c"># This is how you can evaluate the psf, i.e. compute the PDF (in radians^(-2))</span>
3544
<span class="c"># at a given offset &quot;delta&quot; (in radians) and a given logE (in TeV?)</span>
3545
<span class="n">delta</span><span class="p">,</span> <span class="n">logE</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span>
3546
<span class="n">psf</span><span class="p">(</span><span class="n">delta</span><span class="p">,</span> <span class="n">logE</span><span class="p">)</span>
3547
</pre></div>
3548

    
3549
</div>
3550
</div>
3551
</div>
3552
<div class="cell border-box-sizing code_cell vbox">
3553
<div class="input hbox">
3554
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
3555
<div class="input_area box-flex1">
3556
<div class="highlight"><pre><span class="c"># Let&#39;s plot the psf at 1 TeV, i.e. at </span>
3557
<span class="n">x_max</span><span class="p">,</span> <span class="n">x_step</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> <span class="mf">0.01</span> <span class="c"># deg</span>
3558
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">x_max</span><span class="p">,</span> <span class="n">x_step</span><span class="p">)</span>
3559
<span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
3560
<span class="k">for</span> <span class="n">ii</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)):</span>
3561
    <span class="c"># We use deg, gammalib uses radians, so convert before and after call</span>
3562
    <span class="n">y</span><span class="p">[</span><span class="n">ii</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">pi</span> <span class="o">/</span> <span class="mi">180</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">psf</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">radians</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">ii</span><span class="p">]),</span> <span class="mi">0</span><span class="p">)</span>
3563
</pre></div>
3564

    
3565
</div>
3566
</div>
3567
</div>
3568
<div class="cell border-box-sizing code_cell vbox">
3569
<div class="input hbox">
3570
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
3571
<div class="input_area box-flex1">
3572
<div class="highlight"><pre><span class="c"># Check normalization</span>
3573
<span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">pi</span> <span class="o">*</span> <span class="n">x</span> <span class="o">*</span> <span class="n">x_step</span> <span class="o">*</span> <span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
3574
</pre></div>
3575

    
3576
</div>
3577
</div>
3578
</div>
3579
<div class="cell border-box-sizing code_cell vbox">
3580
<div class="input hbox">
3581
<div class="prompt input_prompt">In&nbsp;[&nbsp;]:</div>
3582
<div class="input_area box-flex1">
3583
<div class="highlight"><pre><span class="c"># Plot</span>
3584
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span> <span class="o">*</span> <span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">&#39;gammalib&#39;</span><span class="p">);</span>
3585

    
3586
<span class="n">plt</span><span class="o">.</span><span class="n">semilogy</span><span class="p">()</span>
3587
<span class="c">#plt.loglog()</span>
3588
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s">&#39;PDF of 2D distributions on x-axis&#39;</span><span class="p">)</span>
3589
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">&#39;x (deg)&#39;</span><span class="p">)</span>
3590
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&#39;dP / dx (deg^-2)&#39;</span><span class="p">)</span>
3591
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">loc</span><span class="o">=</span><span class="s">&#39;best&#39;</span><span class="p">);</span>
3592
</pre></div>
3593

    
3594
</div>
3595
</div>
3596
</div>
3597
<div class="text_cell_render border-box-sizing rendered_html">
3598
<h2>
3599
  Backup Cells
3600
</h2>
3601
</div>
3602
<div class="cell border-box-sizing code_cell vbox">
3603
<div class="input hbox">
3604
<div class="prompt input_prompt">In&nbsp;[20]:</div>
3605
<div class="input_area box-flex1">
3606
<div class="highlight"><pre><span class="k">class</span> <span class="nc">Fermi_LAT_PSF</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
3607
    <span class="sd">&quot;&quot;&quot;Fermi LAT PSF model</span>
3608

    
3609
<span class="sd">    References:</span>
3610
<span class="sd">    [1] http://adsabs.harvard.edu/abs/2012ApJS..203....4A</span>
3611
<span class="sd">    [2] http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html</span>
3612
<span class="sd">    [3] http://gammalib.sourceforge.net/doxygen/classGLATPsfV3.html</span>
3613
<span class="sd">    &quot;&quot;&quot;</span>
3614

    
3615
    <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">c0</span><span class="o">=</span><span class="mf">3.32</span><span class="p">,</span> <span class="n">c1</span><span class="o">=</span><span class="mf">0.022</span><span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="mf">0.80</span><span class="p">,</span> <span class="n">sigma</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mf">0.2</span><span class="p">):</span>
3616
        <span class="bp">self</span><span class="o">.</span><span class="n">scale_pars</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">c0</span><span class="o">=</span><span class="n">c0</span><span class="p">,</span> <span class="n">c1</span><span class="o">=</span><span class="n">c1</span><span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="n">beta</span><span class="p">)</span>
3617
        <span class="bp">self</span><span class="o">.</span><span class="n">radial_pars</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">sigma</span><span class="o">=</span><span class="n">sigma</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="n">gamma</span><span class="p">)</span>
3618

    
3619
    <span class="nd">@staticmethod</span>
3620
    <span class="k">def</span> <span class="nf">default</span><span class="p">():</span>
3621
        <span class="sd">&quot;&quot;&quot;Set default parameters&quot;&quot;&quot;</span>
3622
        <span class="c"># Front converting values from Table 13 in [1]</span>
3623
        <span class="n">c0</span><span class="p">,</span> <span class="n">c1</span><span class="p">,</span> <span class="n">beta</span> <span class="o">=</span> <span class="mf">3.32</span><span class="p">,</span> <span class="mf">0.022</span><span class="p">,</span> <span class="mf">0.80</span>
3624
        <span class="c"># Random values</span>
3625
        <span class="n">sigma</span><span class="p">,</span> <span class="n">gamma</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span> <span class="mi">2</span>
3626
        <span class="k">return</span> <span class="n">Fermi_LAT_PSF</span><span class="p">(</span><span class="n">c0</span><span class="p">,</span> <span class="n">c1</span><span class="p">,</span> <span class="n">beta</span><span class="p">,</span> <span class="n">gamma</span><span class="p">,</span> <span class="n">sigma</span><span class="p">)</span>
3627
        
3628
    <span class="k">def</span> <span class="nf">scale_factor</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">energy</span><span class="p">):</span>
3629
        <span class="sd">&quot;&quot;&quot;Scale factor containing most of the energy dependence</span>
3630
<span class="sd">        energy in MeV</span>
3631

    
3632
<span class="sd">        Reference: Equation (34) in [1].</span>
3633
<span class="sd">        &quot;&quot;&quot;</span>
3634
        <span class="n">p</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale_pars</span>
3635
        <span class="n">c0</span><span class="p">,</span> <span class="n">c1</span><span class="p">,</span> <span class="n">beta</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="s">&#39;c0&#39;</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="s">&#39;c1&#39;</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="s">&#39;beta&#39;</span><span class="p">]</span>
3636
        <span class="n">term1</span> <span class="o">=</span> <span class="n">c0</span> <span class="o">*</span> <span class="p">(</span><span class="n">energy</span> <span class="o">/</span> <span class="mi">100</span><span class="p">)</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="n">beta</span><span class="p">)</span>
3637
        <span class="n">term2</span> <span class="o">=</span> <span class="n">term1</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">+</span> <span class="n">c1</span> <span class="o">**</span> <span class="mi">2</span>
3638
        <span class="k">return</span> <span class="n">sort</span><span class="p">(</span><span class="n">term2</span><span class="p">)</span>
3639

    
3640
    <span class="k">def</span> <span class="nf">x</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">r</span><span class="p">,</span> <span class="n">energy</span><span class="p">):</span>
3641
        <span class="sd">&quot;&quot;&quot;Scaled angular deviation x.</span>
3642
<span class="sd">        Reference: Equation (35) in [1]</span>
3643
<span class="sd">        &quot;&quot;&quot;</span>
3644
        <span class="k">return</span> <span class="n">r</span> <span class="o">/</span> <span class="n">scale_factor</span><span class="p">(</span><span class="n">energy</span><span class="p">)</span>
3645

    
3646
    <span class="k">def</span> <span class="nf">K</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">r</span><span class="p">):</span>
3647
        <span class="sd">&quot;&quot;&quot;Radial PDF</span>
3648
<span class="sd">        Reference: Equation (36) in [1]</span>
3649
<span class="sd">        &quot;&quot;&quot;</span>
3650
        <span class="n">p</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">radial_pars</span>
3651
        <span class="n">sigma</span><span class="p">,</span> <span class="n">gamma</span> <span class="o">=</span> <span class="n">p</span><span class="p">[</span><span class="s">&#39;sigma&#39;</span><span class="p">],</span> <span class="n">p</span><span class="p">[</span><span class="s">&#39;gamma&#39;</span><span class="p">]</span>
3652
        <span class="k">return</span> <span class="n">king</span><span class="p">(</span><span class="n">r</span><span class="p">,</span> <span class="n">sigma</span><span class="p">,</span> <span class="n">gamma</span><span class="p">)</span>
3653
</pre></div>
3654

    
3655
</div>
3656
</div>
3657
</div>
3658

    
3659
</body>
3660
</html>