show_zenithangle.py
1 |
#! /usr/bin/env python
|
---|---|
2 |
# ==========================================================================
|
3 |
# This script computes a visibility cube
|
4 |
#
|
5 |
# Copyright (C) 2016 Juergen Knoedlseder
|
6 |
#
|
7 |
# This program is free software: you can redistribute it and/or modify
|
8 |
# it under the terms of the GNU General Public License as published by
|
9 |
# the Free Software Foundation, either version 3 of the License, or
|
10 |
# (at your option) any later version.
|
11 |
#
|
12 |
# This program is distributed in the hope that it will be useful,
|
13 |
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
# GNU General Public License for more details.
|
16 |
#
|
17 |
# You should have received a copy of the GNU General Public License
|
18 |
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
19 |
#
|
20 |
# ==========================================================================
|
21 |
import math |
22 |
import gammalib |
23 |
import matplotlib.pyplot as plt |
24 |
|
25 |
|
26 |
# =============== #
|
27 |
# Plot visibility #
|
28 |
# =============== #
|
29 |
def plot_visibility(ra): |
30 |
"""
|
31 |
Plot visibility
|
32 |
"""
|
33 |
# Load visibility cube
|
34 |
cube = gammalib.GSkyMap(file)
|
35 |
|
36 |
# Create figure
|
37 |
plt.figure(1)
|
38 |
plt.title(title) |
39 |
|
40 |
# Plot visibility
|
41 |
#decs = [float(i*10)-90.0 for i in range(18)]
|
42 |
decs = [-64.4, -54.4, -44.4, -34.4, -24.4, -14.4, -4.4, 5.6, 15.6] |
43 |
for dec in decs: |
44 |
|
45 |
# Get RA,DEC index
|
46 |
index = int(ra) + int((dec+90.0))*360 |
47 |
|
48 |
# Extract vectors
|
49 |
zeniths = [float(i) for i in range(cube.nmaps())] |
50 |
visibility = [cube[index, i] for i in range(cube.nmaps())] |
51 |
print(dec, sum(visibility))
|
52 |
|
53 |
# Plot visibility
|
54 |
plt.plot(zeniths, visibility, 'r-')
|
55 |
|
56 |
# Set axes
|
57 |
plt.xlabel('Zenith angle (degrees)')
|
58 |
plt.ylabel('Visibility (hours)')
|
59 |
|
60 |
# Return
|
61 |
return
|
62 |
|
63 |
|
64 |
# ================= #
|
65 |
# Plot zenith angle #
|
66 |
# ================= #
|
67 |
def plot_zenith_angle(ra): |
68 |
"""
|
69 |
Plot zenith angle
|
70 |
"""
|
71 |
# Load visibility cube
|
72 |
cube = gammalib.GSkyMap(file)
|
73 |
|
74 |
# Create figure
|
75 |
plt.figure(2)
|
76 |
plt.title(title) |
77 |
|
78 |
# Plot visibility
|
79 |
zeniths = [float(i) for i in range(60)] |
80 |
visibility = [0.0 for i in range(60)] |
81 |
for izenith, zenith in enumerate(zeniths): |
82 |
|
83 |
# Extract vectors
|
84 |
visibility[izenith] = sum([cube[i,izenith] for i in range(cube.npix())]) |
85 |
|
86 |
# Plot visibility
|
87 |
plt.plot(zeniths, visibility, 'r-')
|
88 |
|
89 |
# Set axes
|
90 |
plt.xlabel('Zenith (degrees)')
|
91 |
plt.ylabel('Visibility * Solid angle (hours deg$^2$)')
|
92 |
plt.xlim([0,60]) |
93 |
|
94 |
# Return
|
95 |
return
|
96 |
|
97 |
|
98 |
# ================ #
|
99 |
# Plot declination #
|
100 |
# ================ #
|
101 |
def plot_declination(ra): |
102 |
"""
|
103 |
"""
|
104 |
# Load visibility cube
|
105 |
cube = gammalib.GSkyMap(file)
|
106 |
|
107 |
# Create figure
|
108 |
plt.figure(3)
|
109 |
plt.title(title) |
110 |
|
111 |
# Plot visibility
|
112 |
decs = [float(i)-89.5 for i in range(180)] |
113 |
visibility = [0.0 for i in range(180)] |
114 |
for idec, dec in enumerate(decs): |
115 |
|
116 |
# Get RA,DEC index
|
117 |
index = int(ra) + idec*360 |
118 |
|
119 |
# Extract vectors
|
120 |
visibility[idec] = sum([cube[index, i] for i in range(cube.nmaps())]) |
121 |
|
122 |
# Plot visibility
|
123 |
plt.plot(decs, visibility, 'r-')
|
124 |
|
125 |
# Set axes
|
126 |
plt.xlabel('Declination (degrees)')
|
127 |
plt.ylabel('Visibility (hours)')
|
128 |
plt.xlim([-90,90]) |
129 |
|
130 |
# Return
|
131 |
return
|
132 |
|
133 |
|
134 |
# ========================= #
|
135 |
# Plot minimum zenith angle #
|
136 |
# ========================= #
|
137 |
def plot_min_zenith(ra): |
138 |
"""
|
139 |
"""
|
140 |
# Load visibility cube
|
141 |
cube = gammalib.GSkyMap(file)
|
142 |
|
143 |
# Create figure
|
144 |
plt.figure(4)
|
145 |
plt.title(title) |
146 |
|
147 |
# Determine minimum zenith angle for each declination
|
148 |
decs = [float(i)-89.5 for i in range(180)] |
149 |
x = [] |
150 |
y = [] |
151 |
for idec, dec in enumerate(decs): |
152 |
|
153 |
# Get RA,DEC index
|
154 |
index = int(ra) + idec*360 |
155 |
|
156 |
# Search first non-zero zenith angle
|
157 |
for iz in range(cube.nmaps()): |
158 |
if cube[index, iz] > 0.0: |
159 |
x.append(dec) |
160 |
y.append(float(iz))
|
161 |
break
|
162 |
|
163 |
# Plot visibility
|
164 |
plt.plot(x, y, 'r-')
|
165 |
|
166 |
# Set axes
|
167 |
plt.xlabel('Declination (degrees)')
|
168 |
plt.ylabel('Minimum zenith angle (deg)')
|
169 |
plt.xlim([-90,90]) |
170 |
|
171 |
# Return
|
172 |
return
|
173 |
|
174 |
|
175 |
#==========================#
|
176 |
# Main routine entry point #
|
177 |
#==========================#
|
178 |
if __name__ == '__main__': |
179 |
|
180 |
# Set parameters
|
181 |
#file = 'viscube_north.fits'
|
182 |
#title = 'CTA North'
|
183 |
file = 'viscube_south.fits'
|
184 |
title = 'CTA South'
|
185 |
ra = 220.0
|
186 |
|
187 |
# Plot zenith angle
|
188 |
plot_visibility(ra) |
189 |
plot_zenith_angle(ra) |
190 |
plot_declination(ra) |
191 |
plot_min_zenith(ra) |
192 |
|
193 |
# Show plot
|
194 |
plt.show() |