Bug #1496

Fit errors in log parabola fit are too large

Added by Knödlseder Jürgen over 9 years ago. Updated over 9 years ago.

Status:RejectedStart date:07/01/2015
Priority:NormalDue date:
Assigned To:Knödlseder Jürgen% Done:

0%

Category:-
Target version:1.0.0
Duration:

Description

When fitting all parameters, the fit errors of the log parabola model are too large.

The problem can be reproduced using this XML file: crab_logparabola.xml.

The ctlike run produces the following output:

2015-07-01T06:03:36: +=================================+
2015-07-01T06:03:36: | Maximum likelihood optimisation |
2015-07-01T06:03:36: +=================================+
2015-07-01T06:03:36:  >Iteration   0: -logL=133492.928, Lambda=1.0e-03
2015-07-01T06:03:36:  >Iteration   1: -logL=133489.599, Lambda=1.0e-03, delta=3.330, max(|grad|)=3.544902 [Index:8]
2015-07-01T06:03:36:  >Iteration   2: -logL=133489.598, Lambda=1.0e-04, delta=0.000, max(|grad|)=0.013988 [Index:8]
2015-07-01T06:03:37: 
2015-07-01T06:03:37: +=========================================+
2015-07-01T06:03:37: | Maximum likelihood optimization results |
2015-07-01T06:03:37: +=========================================+
2015-07-01T06:03:37: === GOptimizerLM ===
2015-07-01T06:03:37:  Optimized function value ..: 133489.598
2015-07-01T06:03:37:  Absolute precision ........: 0.005
2015-07-01T06:03:37:  Acceptable value decrease .: 2
2015-07-01T06:03:37:  Optimization status .......: converged
2015-07-01T06:03:37:  Number of parameters ......: 11
2015-07-01T06:03:37:  Number of free parameters .: 6
2015-07-01T06:03:37:  Number of iterations ......: 2
2015-07-01T06:03:37:  Lambda ....................: 1e-05
2015-07-01T06:03:37:  Maximum log likelihood ....: -133489.598
2015-07-01T06:03:37:  Observed events  (Nobs) ...: 57339.000
2015-07-01T06:03:37:  Predicted events (Npred) ..: 57337.998 (Nobs - Npred = 1.00155)
2015-07-01T06:03:37: === GModels ===
2015-07-01T06:03:37:  Number of models ..........: 2
2015-07-01T06:03:37:  Number of parameters ......: 11
2015-07-01T06:03:37: === GModelSky ===
2015-07-01T06:03:37:  Name ......................: Crab
2015-07-01T06:03:37:  Instruments ...............: all
2015-07-01T06:03:37:  Instrument scale factors ..: unity
2015-07-01T06:03:37:  Observation identifiers ...: all
2015-07-01T06:03:37:  Model type ................: PointSource
2015-07-01T06:03:37:  Model components ..........: "SkyDirFunction" * "LogParabola" * "Constant" 
2015-07-01T06:03:37:  Number of parameters ......: 7
2015-07-01T06:03:37:  Number of spatial par's ...: 2
2015-07-01T06:03:37:   RA .......................: 83.6331 [-360,360] deg (fixed,scale=1)
2015-07-01T06:03:37:   DEC ......................: 22.0145 [-90,90] deg (fixed,scale=1)
2015-07-01T06:03:37:  Number of spectral par's ..: 4
2015-07-01T06:03:37:   Prefactor ................: 5.86089e-16 +/- 4.39833e-11 [1e-23,1e-13] ph/cm2/s/MeV (free,scale=1e-16,gradient)
2015-07-01T06:03:37:   Index ....................: -2.32353 +/- 4567.39 [-0,-5]  (free,scale=-1,gradient)
2015-07-01T06:03:37:   Curvature ................: -0.0707068 +/- 0.00274528 [-0.01,-1000]  (free,scale=-1,gradient)
2015-07-01T06:03:37:   PivotEnergy ..............: 998705 +/- 3.22562e+10 [10000,1e+09] MeV (free,scale=1e+06,gradient)
2015-07-01T06:03:37:  Number of temporal par's ..: 1
2015-07-01T06:03:37:   Normalization ............: 1 (relative value) (fixed,scale=1,gradient)
2015-07-01T06:03:37: === GCTAModelIrfBackground ===
2015-07-01T06:03:37:  Name ......................: Background model
2015-07-01T06:03:37:  Instruments ...............: CTA
2015-07-01T06:03:37:  Instrument scale factors ..: unity
2015-07-01T06:03:37:  Observation identifiers ...: all
2015-07-01T06:03:37:  Model type ................: "PowerLaw" * "Constant" 
2015-07-01T06:03:37:  Number of parameters ......: 4
2015-07-01T06:03:37:  Number of spectral par's ..: 3
2015-07-01T06:03:37:   Prefactor ................: 0.999265 +/- 0.0215484 [0.001,1000] ph/cm2/s/MeV (free,scale=1,gradient)
2015-07-01T06:03:37:   Index ....................: -0.0117382 +/- 0.0123976 [-5,5]  (free,scale=1,gradient)
2015-07-01T06:03:37:   PivotEnergy ..............: 1e+06 [10000,1e+09] MeV (fixed,scale=1e+06,gradient)
2015-07-01T06:03:37:  Number of temporal par's ..: 1
2015-07-01T06:03:37:   Normalization ............: 1 (relative value) (fixed,scale=1,gradient)

crab_logparabola.xml Magnifier (1.21 KB) Knödlseder Jürgen, 07/01/2015 08:03 AM


Recurrence

No recurrence.


Related issues

Related to GammaLib - Bug #1447: Fit errors too large Closed 03/18/2015
Related to GammaLib - Action #1004: Make gammalib compatible with P7REP LAT data (add IRFs an... Closed 11/28/2013
Related to GammaLib - Action #1060: Investigate whether a more precise curvature matrix compu... Closed 01/07/2014

History

#1 Updated by Knödlseder Jürgen over 9 years ago

#2 Updated by Knödlseder Jürgen over 9 years ago

I just disabled the analytical gradient and replaced it by a numerical gradient. This did not solve the issues, meaning that the problem does not come from a wrong analytical gradient computation:

2015-07-01T07:11:37: === GOptimizerLM ===
2015-07-01T07:11:37:  Optimized function value ..: 133489.598
2015-07-01T07:11:37:  Absolute precision ........: 0.005
2015-07-01T07:11:37:  Acceptable value decrease .: 2
2015-07-01T07:11:37:  Optimization status .......: errors are inaccurate
2015-07-01T07:11:37:  Number of parameters ......: 11
2015-07-01T07:11:37:  Number of free parameters .: 6
2015-07-01T07:11:37:  Number of iterations ......: 2
2015-07-01T07:11:37:  Lambda ....................: 1e-05
2015-07-01T07:11:37:  Maximum log likelihood ....: -133489.598
2015-07-01T07:11:37:  Observed events  (Nobs) ...: 57339.000
2015-07-01T07:11:37:  Predicted events (Npred) ..: 57337.998 (Nobs - Npred = 1.00154)
2015-07-01T07:11:37: === GModels ===
2015-07-01T07:11:37:  Number of models ..........: 2
2015-07-01T07:11:37:  Number of parameters ......: 11
2015-07-01T07:11:37: === GModelSky ===
2015-07-01T07:11:37:  Name ......................: Crab
2015-07-01T07:11:37:  Instruments ...............: all
2015-07-01T07:11:37:  Instrument scale factors ..: unity
2015-07-01T07:11:37:  Observation identifiers ...: all
2015-07-01T07:11:37:  Model type ................: PointSource
2015-07-01T07:11:37:  Model components ..........: "SkyDirFunction" * "LogParabola" * "Constant" 
2015-07-01T07:11:37:  Number of parameters ......: 7
2015-07-01T07:11:37:  Number of spatial par's ...: 2
2015-07-01T07:11:37:   RA .......................: 83.6331 [-360,360] deg (fixed,scale=1)
2015-07-01T07:11:37:   DEC ......................: 22.0145 [-90,90] deg (fixed,scale=1)
2015-07-01T07:11:37:  Number of spectral par's ..: 4
2015-07-01T07:11:37:   Prefactor ................: 5.86087e-16 +/- 1.03055e-11 [1e-23,1e-13] ph/cm2/s/MeV (free,scale=1e-16,gradient)
2015-07-01T07:11:37:   Index ....................: -2.32353 +/- 1070.16 [-0,-5]  (free,scale=-1,gradient)
2015-07-01T07:11:37:   Curvature ................: -0.0707068 +/- 0.00274528 [-0.01,-1000]  (free,scale=-1,gradient)
2015-07-01T07:11:37:   PivotEnergy ..............: 998706 +/- 7.55782e+09 [10000,1e+09] MeV (free,scale=1e+06)
2015-07-01T07:11:37:  Number of temporal par's ..: 1
2015-07-01T07:11:37:   Normalization ............: 1 (relative value) (fixed,scale=1,gradient)
2015-07-01T07:11:37: === GCTAModelIrfBackground ===
2015-07-01T07:11:37:  Name ......................: Background model
2015-07-01T07:11:37:  Instruments ...............: CTA
2015-07-01T07:11:37:  Instrument scale factors ..: unity
2015-07-01T07:11:37:  Observation identifiers ...: all
2015-07-01T07:11:37:  Model type ................: "PowerLaw" * "Constant" 
2015-07-01T07:11:37:  Number of parameters ......: 4
2015-07-01T07:11:37:  Number of spectral par's ..: 3
2015-07-01T07:11:37:   Prefactor ................: 0.999265 +/- 0.0215484 [0.001,1000] ph/cm2/s/MeV (free,scale=1,gradient)
2015-07-01T07:11:37:   Index ....................: -0.0117382 +/- 0.0123976 [-5,5]  (free,scale=1,gradient)
2015-07-01T07:11:37:   PivotEnergy ..............: 1e+06 [10000,1e+09] MeV (fixed,scale=1e+06,gradient)
2015-07-01T07:11:37:  Number of temporal par's ..: 1
2015-07-01T07:11:37:   Normalization ............: 1 (relative value) (fixed,scale=1,gradient)

#3 Updated by Knödlseder Jürgen over 9 years ago

I replaced the error computation in ctlike by the Hessian error computation. Surprisingly, this gives basically the same covariance matrix, yet this covariance matrix is not positive definite:

=== GMatrixSparse === (curvature matrix)
 Number of rows ............: 11
 Number of columns .........: 11
 Number of nonzero elements : 36
 Number of allocated cells .: 548
 Memory block size .........: 512
 Sparse matrix fill ........: 0.297521
 Pending element ...........: 0
 Fill stack size ...........: 0 (none)
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 1268.55, 5724.77, -14854.5, 16486.8, 0, 43.0204, -79.7296, 0, 0
 0, 0, 5724.77, 87060.3, -93910, 65733.2, 0, 467.303, -917.921, 0, 0
 0, 0, -14854.5, -93910, 318438, -189252, 0, -917.99, 1841.59, 0, 0
 0, 0, 16486.8, 65733.2, -189252, 215500, 0, 520.441, -957.187, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 43.0204, 467.303, -917.99, 520.441, 0, 13279, -21126.9, 0, 0
 0, 0, -79.7296, -917.921, 1841.59, -957.187, 0, -21126.9, 40119.7, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
=== GMatrixSparse === (Hessian)
 Number of rows ............: 11
 Number of columns .........: 11
 Number of nonzero elements : 36
 Number of allocated cells .: 512
 Memory block size .........: 512
 Sparse matrix fill ........: 0.297521
 Pending element ...........: 0
 Fill stack size ...........: 0 (none)
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 1268.47, 5725.31, -14851.8, 16487.6, 0, 43.0624, -79.2227, 0, 0
 0, 0, 5725.31, 87059.9, -93708.9, 65739, 0, 467.462, -917.827, 0, 0
 0, 0, -14851.8, -93708.9, 319855, -189275, 0, -917.479, 1846.5, 0, 0
 0, 0, 16487.6, 65739, -189275, 215497, 0, 520.326, -958.55, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 43.0624, 467.462, -917.479, 520.326, 0, 13279, -21127, 0, 0
 0, 0, -79.2227, -917.827, 1846.5, -958.55, 0, -21127, 40278.9, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Non-Positive definite hessian matrix encountered.
Load diagonal elements with 1e-10. Fit errors may be inaccurate.
Non-Positive definite hessian matrix encountered, even after diagonal loading.

#4 Updated by Knödlseder Jürgen over 9 years ago

I played with the PivotEnergy scale factor, and this had an impact on the result.

<parameter name="Scale"     scale="1.0"   value="1.0e6" min="0.01"  max="1.0e9" free="1"/>

gave
2015-07-01T10:38:41:  +==================+
2015-07-01T10:38:41:  | Curvature matrix |
2015-07-01T10:38:41:  +==================+
2015-07-01T10:38:41:  === GMatrixSparse ===
2015-07-01T10:38:41:   Number of rows ............: 11
2015-07-01T10:38:41:   Number of columns .........: 11
2015-07-01T10:38:41:   Number of nonzero elements : 36
2015-07-01T10:38:41:   Number of allocated cells .: 548
2015-07-01T10:38:41:   Memory block size .........: 512
2015-07-01T10:38:41:   Sparse matrix fill ........: 0.297521
2015-07-01T10:38:41:   Pending element ...........: 0
2015-07-01T10:38:41:   Fill stack size ...........: 0 (none)
2015-07-01T10:38:41:   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2015-07-01T10:38:41:   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2015-07-01T10:38:41:   0, 0, 1270.09, 5730.2, -14866.5, 0.0164925, 0, 43.0466, -79.7782, 0, 0
2015-07-01T10:38:41:   0, 0, 5730.2, 87077.9, -93978.4, 0.0657413, 0, 467.369, -918.043, 0, 0
2015-07-01T10:38:41:   0, 0, -14866.5, -93978.4, 318537, -0.189237, 0, -918.235, 1842.07, 0, 0
2015-07-01T10:38:41:   0, 0, 0.0164925, 0.0657413, -0.189237, 2.15387e-07, 0, 0.000520305, -0.000956936, 0, 0
2015-07-01T10:38:41:   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2015-07-01T10:38:41:   0, 0, 43.0466, 467.369, -918.235, 0.000520305, 0, 13279, -21126.9, 0, 0
2015-07-01T10:38:41:   0, 0, -79.7782, -918.043, 1842.07, -0.000956936, 0, -21126.9, 40119.7, 0, 0
2015-07-01T10:38:41:   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2015-07-01T10:38:41:   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2015-07-01T10:38:41:  Non-Positive definite curvature matrix encountered.
2015-07-01T10:38:41:  Load diagonal elements with 1e-10. Fit errors may be inaccurate.
...
2015-07-01T10:38:41: === GModelSky ===
2015-07-01T10:38:41:  Name ......................: Crab
2015-07-01T10:38:41:  Instruments ...............: all
2015-07-01T10:38:41:  Instrument scale factors ..: unity
2015-07-01T10:38:41:  Observation identifiers ...: all
2015-07-01T10:38:41:  Model type ................: PointSource
2015-07-01T10:38:41:  Model components ..........: "SkyDirFunction" * "LogParabola" * "Constant" 
2015-07-01T10:38:41:  Number of parameters ......: 7
2015-07-01T10:38:41:  Number of spatial par's ...: 2
2015-07-01T10:38:41:   RA .......................: 83.6331 [-360,360] deg (fixed,scale=1)
2015-07-01T10:38:41:   DEC ......................: 22.0145 [-90,90] deg (fixed,scale=1)
2015-07-01T10:38:41:  Number of spectral par's ..: 4
2015-07-01T10:38:41:   Prefactor ................: 5.85732e-16 +/- 1.36307e-16 [1e-23,1e-13] ph/cm2/s/MeV (free,scale=1e-16,gradient)
2015-07-01T10:38:41:   Index ....................: -2.32357 +/- 0.014771 [-0,-5]  (free,scale=-1,gradient)
2015-07-01T10:38:41:   Curvature ................: -0.0707068 +/- 0.00274528 [-0.01,-1000]  (free,scale=-1,gradient)
2015-07-01T10:38:41:   PivotEnergy ..............: 998967 +/- 100000 [0.01,1e+09] MeV (free,scale=1,gradient)
2015-07-01T10:38:41:  Number of temporal par's ..: 1
2015-07-01T10:38:41:   Normalization ............: 1 (relative value) (fixed,scale=1,gradient)

#5 Updated by Knödlseder Jürgen over 9 years ago

Here some more results:

<parameter name="Scale"     scale="10.0"   value="1.0e5" min="0.01"  max="1.0e9" free="1"/>
...
2015-07-01T10:41:09:   Prefactor ................: 5.86064e-16 +/- 5.67734e-11 [1e-23,1e-13] ph/cm2/s/MeV (free,scale=1e-16,gradient)
2015-07-01T10:41:09:   Index ....................: -2.32353 +/- 5895.79 [-0,-5]  (free,scale=-1,gradient)
2015-07-01T10:41:09:   Curvature ................: -0.0707068 +/- 0.00274528 [-0.01,-1000]  (free,scale=-1,gradient)
2015-07-01T10:41:09:   PivotEnergy ..............: 998723 +/- 4.16386e+10 [0.1,1e+10] MeV (free,scale=10,gradient)
<parameter name="Scale"     scale="100.0"   value="1.0e4" min="0.01"  max="1.0e9" free="1"/>
...
2015-07-01T10:42:48:   Prefactor ................: 5.86114e-16 +/- 5.04599e-11 [1e-23,1e-13] ph/cm2/s/MeV (free,scale=1e-16,gradient)
2015-07-01T10:42:48:   Index ....................: -2.32353 +/- 5239.71 [-0,-5]  (free,scale=-1,gradient)
2015-07-01T10:42:48:   Curvature ................: -0.0707068 +/- 0.00274528 [-0.01,-1000]  (free,scale=-1,gradient)
2015-07-01T10:42:48:   PivotEnergy ..............: 998687 +/- 3.70038e+10 [1,1e+11] MeV (free,scale=100,gradient)

Looks that playing around with the scales does lead to a non positive definite matrix, resulting in diagonal loading which essentially switches off the pivot energy.

#6 Updated by Knödlseder Jürgen over 9 years ago

After some lunch time discussions we concluded that it is impossible to constrain the pivot energy of the log-parabola model as the model parameters are fully degenerated. This issue is thus considered as a non-issue, and can be rejected.

Note, however, that this should be mentioned in the known issues of the ctools documentation.

#7 Updated by Knödlseder Jürgen over 9 years ago

  • Status changed from New to Rejected

Also available in: Atom PDF