Feature #1948

Add smooth broken power law spectrum model

Added by Knödlseder Jürgen almost 8 years ago. Updated over 7 years ago.

Status:ClosedStart date:03/10/2017
Priority:NormalDue date:
Assigned To:Cardenzana Josh% Done:

100%

Category:-
Target version:1.3.0
Duration:

Description

A smooth broken power law spectrum model should be implemented, following the Fermi-LAT syntax (see https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html#SmoothBrokenPowerLaw and https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/xml_model_defs.html#SmoothBrokenPowerLaw).

The XML format should be

<spectrum type="SmoothBrokenPowerLaw">
  <parameter free="1" max="1e10" min="0.0" name="Prefactor" scale="1e-06" value="1.0"/>
  <parameter free="1" max="-1.0" min="-5.0" name="Index1" scale="1.0" value="-2.0"/>
  <parameter free="0" max="2000.0" min="30.0" name="Scale" scale="1.0" value="100.0"/>
  <parameter free="1" max="-1.0" min="-5.0" name="Index2" scale="1.0" value="-2.0"/>
  <parameter free="1" max="5e5" min="20" name="BreakValue" scale="1.0" value="1e3"/>
  <parameter free="1" max="10" min="0.01" name="Beta" scale="1.0" value="0.2"/>
</spectrum>

The following alternative format, being more consistent in the namings, should also be supported:
<spectrum type="SmoothBrokenPowerLaw">
  <parameter free="1" max="1e10" min="0.0" name="Prefactor" scale="1e-06" value="1.0"/>
  <parameter free="1" max="-1.0" min="-5.0" name="Index1" scale="1.0" value="-2.0"/>
  <parameter free="0" max="2000.0" min="30.0" name="PivotEnergy" scale="1.0" value="100.0"/>
  <parameter free="1" max="-1.0" min="-5.0" name="Index2" scale="1.0" value="-2.0"/>
  <parameter free="1" max="5e5" min="20" name="BreakEnergy" scale="1.0" value="1e3"/>
  <parameter free="1" max="10" min="0.01" name="BreakSmoothness" scale="1.0" value="0.2"/>
</spectrum>

To implement the model, the best is to start from the GModelSpectralBrokenPlaw class, rename the .hpp, .cpp and .i files to GModelSpectralSmoothBrokenPlaw (see https://cta-redmine.irap.omp.eu/attachments/download/1919/6th-coding-sprint.pdf) and modify the files as needed.

prefactor.png (32.3 KB) Knödlseder Jürgen, 03/28/2017 02:00 PM

index1.png (35.5 KB) Knödlseder Jürgen, 03/28/2017 02:00 PM

index2.png (35.5 KB) Knödlseder Jürgen, 03/28/2017 02:00 PM

breakenergy.png (38 KB) Knödlseder Jürgen, 03/28/2017 02:00 PM

smoothness.png (40.3 KB) Knödlseder Jürgen, 03/28/2017 02:00 PM

prefactor_nosmooth.png (40.4 KB) Knödlseder Jürgen, 03/28/2017 02:33 PM

index1_nosmooth.png (39.2 KB) Knödlseder Jürgen, 03/28/2017 02:33 PM

index2_nosmooth.png (39.8 KB) Knödlseder Jürgen, 03/28/2017 02:33 PM

breakenergy_nosmooth.png (37.9 KB) Knödlseder Jürgen, 03/28/2017 02:33 PM

prefactor_smooth2.0.png (33.8 KB) Knödlseder Jürgen, 03/28/2017 02:36 PM

index1_smooth2.0.png (31.2 KB) Knödlseder Jürgen, 03/28/2017 02:36 PM

index2_smooth2.0.png (31.5 KB) Knödlseder Jürgen, 03/28/2017 02:36 PM

breakenergy_smooth2.0.png (34.7 KB) Knödlseder Jürgen, 03/28/2017 02:36 PM

prefactor_smooth0.02.png (40.3 KB) Knödlseder Jürgen, 03/28/2017 03:03 PM

index1_smooth0.02.png (39.1 KB) Knödlseder Jürgen, 03/28/2017 03:03 PM

index2_smooth0.02.png (39.4 KB) Knödlseder Jürgen, 03/28/2017 03:03 PM

breakenergy_smooth0.02.png (41.7 KB) Knödlseder Jürgen, 03/28/2017 03:03 PM

Prefactor Index1 Index2 Breakenergy Smoothness Prefactor_nosmooth Index1_nosmooth Index2_nosmooth Breakenergy_nosmooth Prefactor_smooth2.0 Index1_smooth2.0 Index2_smooth2.0 Breakenergy_smooth2.0 Prefactor_smooth0.02 Index1_smooth0.02 Index2_smooth0.02 Breakenergy_smooth0.02

Recurrence

No recurrence.

History

#1 Updated by Knödlseder Jürgen almost 8 years ago

  • Status changed from New to In Progress
  • % Done changed from 0 to 50

#2 Updated by Knödlseder Jürgen over 7 years ago

I created 100 pulls for the following model definition XML file:
<?xml version="1.0" standalone="no"?>
<source_library title="source library">
  <source name="Crab" type="PointSource">
    <spectrum type="SmoothBrokenPowerLaw">
      <parameter name="Prefactor"       scale="1e-16" value="5.7"  min="1e-07" max="1000.0" free="1"/>
      <parameter name="Index1"          scale="-1"    value="2.48" min="0.0"   max="+5.0"   free="1"/>
      <parameter name="PivotEnergy"     scale="1e6"   value="0.3"  min="0.01"  max="1000.0" free="0"/>
      <parameter name="Index2"          scale="-1"    value="2.70" min="0.01"  max="+5.0"   free="1"/>
      <parameter name="BreakEnergy"     scale="1e6"   value="1.0"  min="0.01"  max="1000.0" free="1"/>
      <parameter name="BreakSmoothness" scale="1.0"   value="0.2"  min="0.01"  max="10.0"   free="1"/>
    </spectrum>
    <spatialModel type="PointSource">
      <parameter name="RA"  scale="1.0" value="83.6331" min="-360" max="360" free="0"/>
      <parameter name="DEC" scale="1.0" value="22.0145" min="-90"  max="90"  free="0"/>
    </spatialModel>
  </source>
  <source name="Background" type="CTAIrfBackground" instrument="CTA">
    <spectrum type="PowerLaw">
      <parameter name="Prefactor"   scale="1.0" value="1.0" min="1e-3" max="1e3"    free="1"/>
      <parameter name="Index"       scale="1.0" value="0.0" min="-5.0" max="+5.0"   free="1"/>
      <parameter name="PivotEnergy" scale="1e6" value="1.0" min="0.01" max="1000.0" free="0"/>
    </spectrum>
  </source>
</source_library>

Below the resulting pull histograms:

#3 Updated by Knödlseder Jürgen over 7 years ago

I now tried fixing the smoothness factor. This did change the pull distributions, but did not lead to satisfactory pull histograms:

#4 Updated by Knödlseder Jürgen over 7 years ago

I now made the smoothness larger:
<?xml version="1.0" standalone="no"?>
<source_library title="source library">
  <source name="Crab" type="PointSource">
    <spectrum type="SmoothBrokenPowerLaw">
      <parameter name="Prefactor"       scale="1e-16" value="5.7"  min="1e-07" max="1000.0" free="1"/>
      <parameter name="Index1"          scale="-1"    value="2.48" min="0.0"   max="+5.0"   free="1"/>
      <parameter name="PivotEnergy"     scale="1e6"   value="0.3"  min="0.01"  max="1000.0" free="0"/>
      <parameter name="Index2"          scale="-1"    value="2.70" min="0.01"  max="+5.0"   free="1"/>
      <parameter name="BreakEnergy"     scale="1e6"   value="1.0"  min="0.01"  max="1000.0" free="1"/>
      <parameter name="BreakSmoothness" scale="1.0"   value="2.0"  min="0.01"  max="10.0"   free="0"/>
    </spectrum>
    <spatialModel type="PointSource">
      <parameter name="RA"  scale="1.0" value="83.6331" min="-360" max="360" free="0"/>
      <parameter name="DEC" scale="1.0" value="22.0145" min="-90"  max="90"  free="0"/>
    </spatialModel>
  </source>
  <source name="Background" type="CTAIrfBackground" instrument="CTA">
    <spectrum type="PowerLaw">
      <parameter name="Prefactor"   scale="1.0" value="1.0" min="1e-3" max="1e3"    free="1"/>
      <parameter name="Index"       scale="1.0" value="0.0" min="-5.0" max="+5.0"   free="1"/>
      <parameter name="PivotEnergy" scale="1e6" value="1.0" min="0.01" max="1000.0" free="0"/>
    </spectrum>
  </source>
</source_library>

This had a dramatic impact on the pull distributions:

#5 Updated by Knödlseder Jürgen over 7 years ago

Setting the smoothness parameters to a small value (0.02) improves things, but the break energy is still not perfect.

#6 Updated by Knödlseder Jürgen over 7 years ago

Note that a simple simulation of 30 min of data using the initial XML model, and fitting the simulated events using ctlike indicates that there are convergence problems. This typical happens for invalid gradients:

2017-03-28T13:53:07: +=================================+
2017-03-28T13:53:07: | Maximum likelihood optimisation |
2017-03-28T13:53:07: +=================================+
2017-03-28T13:53:07:  >Iteration   0: -logL=157024.509, Lambda=1.0e-03
2017-03-28T13:53:07:    Parameter "BreakEnergy" drives optimization step (step=0.497168)
2017-03-28T13:53:07:   Iteration   1: -logL=157024.509, Lambda=1.0e-03, delta=-696.181, max(|grad|)=-38674.620105 [BreakEnergy:6] (stalled)
2017-03-28T13:53:07:    Parameter "BreakEnergy" does not drive optimization step anymore.
2017-03-28T13:53:07:   Iteration   2: -logL=157024.509, Lambda=1.0e-02, delta=-16.823, max(|grad|)=283.058569 [Index2:4] (stalled)
2017-03-28T13:53:07:  >Iteration   3: -logL=157022.062, Lambda=1.0e-01, delta=2.446, max(|grad|)=11.343717 [Index:10]
2017-03-28T13:53:08:   Iteration   4: -logL=157022.062, Lambda=1.0e-02, delta=-6.516, max(|grad|)=128.891134 [Index2:4] (stalled)
2017-03-28T13:53:08:  >Iteration   5: -logL=157021.979, Lambda=1.0e-01, delta=0.083, max(|grad|)=4.062394 [Index1:3]
2017-03-28T13:53:08:   Iteration   6: -logL=157021.979, Lambda=1.0e-02, delta=-2.265, max(|grad|)=66.600685 [Index2:4] (stalled)
2017-03-28T13:53:08:  >Iteration   7: -logL=157021.925, Lambda=1.0e-01, delta=0.054, max(|grad|)=2.610925 [Index1:3]
2017-03-28T13:53:08:   Iteration   8: -logL=157022.951, Lambda=1.0e-02, delta=-1.027, max(|grad|)=43.167592 [Index2:4] (stalled)
2017-03-28T13:53:08:  >Iteration   9: -logL=157021.701, Lambda=1.0e-01, delta=1.250, max(|grad|)=3.155219 [Index2:4]
2017-03-28T13:53:08:   Iteration  10: -logL=157021.722, Lambda=1.0e-02, delta=-0.020, max(|grad|)=14.470936 [BreakSmoothness:7] (stalled)
2017-03-28T13:53:08:  >Iteration  11: -logL=157021.597, Lambda=1.0e-01, delta=0.124, max(|grad|)=0.701246 [Index2:4]
2017-03-28T13:53:08:  >Iteration  12: -logL=157021.577, Lambda=1.0e-02, delta=0.020, max(|grad|)=-9.644692 [BreakEnergy:6]
2017-03-28T13:53:08:   Iteration  13: -logL=157021.577, Lambda=1.0e-03, delta=-100.522, max(|grad|)=-2958.702580 [BreakEnergy:6] (stalled)
2017-03-28T13:53:08:  >Iteration  14: -logL=157021.504, Lambda=1.0e-02, delta=0.073, max(|grad|)=-8.585555 [BreakEnergy:6]
2017-03-28T13:53:08:   Iteration  15: -logL=157021.504, Lambda=1.0e-03, delta=-77.307, max(|grad|)=-2626.302597 [BreakEnergy:6] (stalled)
2017-03-28T13:53:08:  >Iteration  16: -logL=157021.447, Lambda=1.0e-02, delta=0.057, max(|grad|)=-9.376360 [BreakEnergy:6]
2017-03-28T13:53:08:   Iteration  17: -logL=157021.447, Lambda=1.0e-03, delta=-53.416, max(|grad|)=-2163.691984 [BreakEnergy:6] (stalled)
2017-03-28T13:53:08:  >Iteration  18: -logL=157021.385, Lambda=1.0e-02, delta=0.061, max(|grad|)=-10.625401 [BreakEnergy:6]
2017-03-28T13:53:09:   Iteration  19: -logL=157021.385, Lambda=1.0e-03, delta=-38.693, max(|grad|)=-1886.824989 [BreakEnergy:6] (stalled)
2017-03-28T13:53:09:  >Iteration  20: -logL=157021.307, Lambda=1.0e-02, delta=0.079, max(|grad|)=-13.005929 [BreakEnergy:6]
2017-03-28T13:53:09:   Iteration  21: -logL=157021.307, Lambda=1.0e-03, delta=-26.422, max(|grad|)=-1607.011273 [BreakEnergy:6] (stalled)
2017-03-28T13:53:09:  >Iteration  22: -logL=157021.169, Lambda=1.0e-02, delta=0.137, max(|grad|)=-17.670655 [BreakEnergy:6]
2017-03-28T13:53:09:   Iteration  23: -logL=157021.169, Lambda=1.0e-03, delta=-11.325, max(|grad|)=-1036.219873 [BreakEnergy:6] (stalled)
2017-03-28T13:53:09:  >Iteration  24: -logL=157020.836, Lambda=1.0e-02, delta=0.334, max(|grad|)=-27.476821 [BreakEnergy:6]
2017-03-28T13:53:09:  >Iteration  25: -logL=157020.782, Lambda=1.0e-03, delta=0.054, max(|grad|)=-143.289056 [BreakEnergy:6]
2017-03-28T13:53:09:   Iteration  26: -logL=157020.782, Lambda=1.0e-04, delta=-12.308, max(|grad|)=-1518.463100 [BreakEnergy:6] (stalled)
2017-03-28T13:53:09:  >Iteration  27: -logL=157020.424, Lambda=1.0e-03, delta=0.358, max(|grad|)=-73.785714 [BreakEnergy:6]
2017-03-28T13:53:09:  >Iteration  28: -logL=157020.337, Lambda=1.0e-04, delta=0.087, max(|grad|)=-20.992382 [BreakEnergy:6]
2017-03-28T13:53:09:   Iteration  29: -logL=157021.414, Lambda=1.0e-05, delta=-1.077, max(|grad|)=-422.701433 [BreakEnergy:6] (stalled)
2017-03-28T13:53:09:  >Iteration  30: -logL=157021.237, Lambda=1.0e-04, delta=0.177, max(|grad|)=-286.616084 [BreakEnergy:6]
2017-03-28T13:53:09:   Iteration  31: -logL=157021.237, Lambda=1.0e-05, delta=-1.526, max(|grad|)=-679.670560 [BreakEnergy:6] (stalled)
2017-03-28T13:53:09:  >Iteration  32: -logL=157020.652, Lambda=1.0e-04, delta=0.585, max(|grad|)=-212.471407 [BreakEnergy:6]
2017-03-28T13:53:09:   Iteration  33: -logL=157020.652, Lambda=1.0e-05, delta=-18.470, max(|grad|)=-804.677134 [BreakEnergy:6] (stalled)
2017-03-28T13:53:10:  >Iteration  34: -logL=157020.632, Lambda=1.0e-04, delta=0.021, max(|grad|)=-162.477223 [BreakEnergy:6]
2017-03-28T13:53:10:   Iteration  35: -logL=157020.632, Lambda=1.0e-05, delta=-2.698, max(|grad|)=-768.319088 [BreakEnergy:6] (stalled)
2017-03-28T13:53:10:   Iteration  36: -logL=157020.632, Lambda=1.0e-04, delta=-0.133, max(|grad|)=-250.945203 [BreakEnergy:6] (stalled)
2017-03-28T13:53:10:  >Iteration  37: -logL=157020.332, Lambda=1.0e-03, delta=0.300, max(|grad|)=-11.121790 [BreakEnergy:6]
2017-03-28T13:53:10:  >Iteration  38: -logL=157020.330, Lambda=1.0e-04, delta=0.002, max(|grad|)=-4.292704 [BreakEnergy:6]

#7 Updated by Knödlseder Jürgen over 7 years ago

I replaced the analytical gradient computations by numerical gradient computations which did not change the results. This indicates that the problem is possibly inherent to the model.

I therefore change the slope of the second index to a stepper value as follows:

<?xml version="1.0" standalone="no"?>
<source_library title="source library">
  <source name="Crab" type="PointSource">
    <spectrum type="SmoothBrokenPowerLaw">
      <parameter name="Prefactor"       scale="1e-16" value="5.7"  min="1e-07" max="1000.0" free="1"/>
      <parameter name="Index1"          scale="-1"    value="2.48" min="0.0"   max="+5.0"   free="1"/>
      <parameter name="PivotEnergy"     scale="1e6"   value="0.3"  min="0.01"  max="1000.0" free="0"/>
      <parameter name="Index2"          scale="-1"    value="3.48" min="0.01"  max="+5.0"   free="1"/>
      <parameter name="BreakEnergy"     scale="1e6"   value="1.0"  min="0.01"  max="1000.0" free="1"/>
      <parameter name="BreakSmoothness" scale="1.0"   value="0.2"  min="0.01"  max="10.0"   free="1"/>
    </spectrum>
    <spatialModel type="PointSource">
      <parameter name="RA"  scale="1.0" value="83.6331" min="-360" max="360" free="0"/>
      <parameter name="DEC" scale="1.0" value="22.0145" min="-90"  max="90"  free="0"/>
    </spatialModel>
  </source>
  <source name="Background" type="CTAIrfBackground" instrument="CTA">
    <spectrum type="PowerLaw">
      <parameter name="Prefactor"   scale="1.0" value="1.0" min="1e-3" max="1e3"    free="1"/>
      <parameter name="Index"       scale="1.0" value="0.0" min="-5.0" max="+5.0"   free="1"/>
      <parameter name="PivotEnergy" scale="1e6" value="1.0" min="0.01" max="1000.0" free="0"/>
    </spectrum>
  </source>
</source_library>

Now the fit seems to converge nicely:
2017-03-28T14:11:14: +=================================+
2017-03-28T14:11:14: | Maximum likelihood optimisation |
2017-03-28T14:11:14: +=================================+
2017-03-28T14:11:14:  >Iteration   0: -logL=156311.871, Lambda=1.0e-03
2017-03-28T14:11:14:  >Iteration   1: -logL=156310.512, Lambda=1.0e-03, delta=1.360, max(|grad|)=2.459834 [Index:10]
2017-03-28T14:11:14:  >Iteration   2: -logL=156310.510, Lambda=1.0e-04, delta=0.002, max(|grad|)=-0.124483 [BreakEnergy:6]

#8 Updated by Knödlseder Jürgen over 7 years ago

  • Status changed from In Progress to Feedback
  • % Done changed from 50 to 100

Added user documentation to GammaLib and ctools.

#9 Updated by Knödlseder Jürgen over 7 years ago

  • Status changed from Feedback to Closed

Also available in: Atom PDF